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Preface

Traditionally, signal processing techniques lay at the foundation of multimedia
data processing and analysis. In the past few years, a new wave of advanced
signal-processing techniques has delivered exciting results, increasing systems
capabilities of efficiently exchanging image data and extracting useful knowl-
edge from them. Signal Processing for Image Enhancement and Multimedia
Processing is an edited volume, written by well-recognized international re-
searchers with extended chapter style versions of the best papers presented at
the SITIS 2006 International Conference.

This book presents the state-of-the-art and recent research results on the
application of advanced signal processing techniques for improving the value
of image and video data. It also discusses feature-based techniques for deep,
feature-oriented analysis of images and new results on video coding on time-
honored topic of securing image information. Signal Processing for Image En-
hancement and Multimedia Processing is designed for a professional audience
composed of practitioners and researchers in industry. This volume is also suit-
able as a reference or secondary text for advanced-level students in computer
science and engineering.

The chapters included in this book are a selection of papers presented at
the Signal and Image Technologies track of the international SITIS 2006 con-
ference. The authors were asked to revise and extend their contributions to
take into account the many challenges and remarks discussed at the confer-
ence. A large number of high quality papers were submitted to SITIS 2006,
demonstrating the growing interest of the research community for image and
multimedia processing.

We acknowledge the hard work and dedication of many people. We thank
the authors who have contributed their work. We appreciate the diligent work
of the SITIS committee members. We are grateful for the help, support and
patience of the Springer publishing team. Finally, thanks to Iwayan Wikacsana
for his invaluable help

Dijon, Milan Ernesto Damiani
July 2007 Kokou Yetongnon

Albert Dipanda
Richard Chbeir
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Université de Bourgogne - Le2i, 12
rue de la Fonderie,
Le Creusot, France
Fabrice@
iutlecreusot.u-bourgogne.fr

Faouzi Soltani
Laboratoire Signaux et Systèmes de
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Université de Bourgogne, Aile des
Sciences de l’Ingénieur,
Dijon, France
paindav@u-bourgogne.fr

Mohamed Abadi
GRIMAAG UAG, Campus de
Fouillole
97157 Pointe--Pitre
Guadeloupe, France
mabadi@univ-ag.fr

Mohamad Susli
School of Electrical Electronic and
Computer Engineering,
The University of Western Australia,
Perth, Australia
abionnnn@gmail.com

Mourad Barkat
Department of Electrical Engineer-
ing, American University of Sharjah,
Sharjah, United Arab Emirates.
mbarkat@aus.edu

Munaga. V. N. K. Prasad
IDRBT, Castle Hills, Road No 1,
Masab Tank,
Hyderabad, India
mvnkprasad@idrbt.ac.in

Narcisse Talla Tankam
LE2i -, Bourgogne University,
Dijon, France
narcisse.talla@u-bourgogne.fr



List of Contributors XV

Olivier Laligant
Universite de Bourgogne - Le2i, 12
rue de la Fonderie
Le Creusot, France
o.laligant@
iutlecreusot.u-bourgogne.fr

P. Manoj
IDRBT, Castle Hills, Road No 1,
Masab Tank,
Hyderabad, India
pmanoj@mtech.idrbt.ac.in

Peter Schelkens
Vrije Universiteit Brussel
Brussel, Belgium
peter.schelkens@vub.ac.be

Pierre Gouton
LE2I, UMR CNRS 5158 Universit
de Bourgogne, Aile des Sciences de
l’Ingénieur,
Dijon, France
pgouton@u-bourgogne.fr

Prabir Bhattacharya
Concordia Institute for Information
Systems Engineering (CIISE)
Concordia University,
Montreal, Canada
prabir@ciise.concordia.ca

Rokia Missaoui
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Québec, Canada
rokia.missaoui@uqo.ca

Ruchan Dong
Institute of Intelligence Information
Processing and
National Key Lab for Radar Signal
Processing, Xidian University
Xian, China.
ruchandong@hotmail.com

Rym Haj Ali
Ecole Superieure des Communica-
tions de Tunis
rym.elhadjali@gmail.com

Sebastiaan Van Leuven
University College of Antwerp
Paardenmarkt 92, B-2000, Antwerp,
Belgium
sebastiaan.vanleuven@gmail.com

Serge Miguet
Lyon2 University, LIRIS Laboratory
Batiment C, 5 av. Pierre Mendes-
France,
Lyon, France
serge.miguet@univ-lyon2.fr

Shuang Wang
Institute of Intelligence Information
Processing and
National Key Lab for Radar Signal
Processing, Xidian University,
Xian, China.

Sofia Ben Jebara
Ecole Superieure des Communica-
tions de Tunis,
Tunis, Tunisia
sofia.benjebara@supcom.rnu.tn

Sonia Zaibi
SYSCOM Lab, ENIT,
Tunis, Tunisia
sonia.zaibi@enit.rnu.tn
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Université de Bourgogne, Le2i UMR
CNRS 5158, Route des plaines de
l’Yonne, BP 16,
Auxerre, France
Yvon.Voisin@u-bourgogne.fr

Zoubeida Messali
Laboratoire Signaux et Systèmes
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Part I

Image Restauration, Filtering and Compression



1

On PDE-based spectrogram image restoration.
Application to wolf chorus noise reduction and

comparison with other algorithms

Benjamı́n Dugnol, Carlos Fernández, Gonzalo Galiano, and Julián Velasco

Dpt. of Mathematics, University of Oviedo
c/ Calvo Sotelo s/n, 33007 Oviedo, Spain
dugnol@uniovi.es, carlos@uniovi.es, galiano@uniovi.es, julian@uniovi.es

Summary. We investigate the use of image processing techniques based on partial
differential equations applied to the image produced by time-frequency representa-
tions of one-dimensional signals, such as the spectrogram. Specifically, we use the
PDE model introduced by Álvarez, Lions and Morel for noise smoothing and edge
enhancement, which we show to be stable under signal and window perturbations
in the spectrogram image. We demonstrate by numerical examples that the corre-
sponding numerical algorithm applied to the spectrogram of a noisy signal reduces
the noise and produce an enhancement of the instantaneous frequency lines, allowing
to track these lines more accurately than with the original spectrogram. We apply
this technique both to synthetic signals and to wolves chorus field recorded signals,
which was the original motivation of this work. Finally, we compare our results with
some classical signal denoising algorithms and with wavelet based image denoising
methods and give some objective measures of the performance of our method. We
emphasize that the 1D signal restoration is not the purpose of our work but the
spectrogram noise reduction for later instantaneous frequency estimation.

Key words: Spectrogram, time-frequency distribution, noise, partial differential
equation, instantaneous frequency, image processing, population counting.

1.1 Introduction

Wolf is a protected specie in many countries around the world. Due to their
predator character their protection must be financed from public budgets for
farmer’s reimbursement of losses and henceforth it is important for author-
ities to know in advance an estimation of their populations [18]. However,
for mammals, few and not very precise techniques are used, mainly based on
the recuperation of field traces, such as steps, excrements and so on. In this
contribution, we propose what it seems to be a new technique to estimate
the population of species which emit some characteristic sounds (howls and
barks, for wolves) which consists on identifying how many different voices are
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emitting in a given recording, task that can be seen as a simplified version
of speech recognition, and that we shall approach by instantaneous frequency
estimation using time-frequency analysis [9]. The literature on this topic is
vast. We refer the reader to, for instance, [4, 6, 12, 13, 15, 16, 19, 20].

However, due to the recording conditions in wilderness, reducing the back-
ground unstructured noise in the recorded signal is a necessary step which
must be accomplished before any further analysis, being this the main issue of
this article. Considering the spectrogram, or any other time-frequency repre-
sentation, of a signal as an image, we use a PDE image processing technique for
edge (instantaneous frequency lines) enhancement and noise reduction based
on a regularization of the mean curvature motion equation, as introduced in
[1]. See also [7, 8] for related works. There exist a variety of PDE-based mod-
els for smoothing and enhancing images that could be used instead, see, for
instance, [2, 17]. Other approaches to image denoising, like wavelet analysis,
may lead to similar results. Although we do not provide a theoretical analysis,
we include some numerical demonstrations using this and other techniques.

1.2 The mathematical model

Let x ∈ L2(R) denote an audio signal and consider the Gabor’s transform
G : R2 → C given by

Gx(t, ω) =
∫

R

x(s)ϕ(s − t)e−iωsds, (1.1)

corresponding to the real, symmetric and normalized window ϕ, with t de-
noting time and ω frequency. The energy density function or spectrogram of x
corresponding to the window ϕ is given by u0(t, ω) = |Gx(t, ω)|2. The regular-
ity of u0 is that inherited from the window ϕ, which we assume to be Lipschitz
continuous. In particular, u0 is a bounded function and we may think of it
as an image and consider its transformation given as the solution u(τ, t, ω)
of the following problem (Problem P), introduced in [1] as an edge-detection
image-smoothing algorithm:

∂u

∂τ
− g(|Gs ∗ ∇u|)A(u) = 0 in R+ × Ω, (1.2)

with the usual no-flow boundary condition ∂u
∂n = 0 on R+ × ∂Ω, and with a

given initial image (the spectrogram of x), u(0, t, ω) = u0(t, ω). In (1.2), the
diffusion operator is defined as

A(u) = (1 − h(|∇u|))Δu + h(|∇u|)
∑

j=1,...,n

fj(
∇u
|∇u| )

∂2u

∂x2
j

,

and the time-frequency domain Ω ⊂ R2 is an open set that we assume to
be bounded. Let us remind the properties and meaning of terms in equation
(1.2):
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Function Gs is a Gaussian of variance s. The variance is a scale parameter
which fixes the minimal size of the details to be kept in the processed
image.

Function g is non-increasing with g(0) = 1 and g(∞) = 0. It is a contrast
function, which allows to decide whether a detail is sharp enough to be
kept.

The composition of Gs and g on ∇u rules the speed of diffusion in the
evolution of the image, controlling the enhancement of the edges and the
noise smoothing.

Isotropic and anisotropic diffusion are combined in the diffusion operator, A,
smoothing the image by local averaging or enforcing diffusion only on the
orthogonal direction to ∇u, respectively. These actions are regulated by
h(s), which is nondecreasing with h(s) = 0 if s ≤ ε, h(s) = 1 if s ≥ 2ε,
being ε the enhancement parameter.

1.2.1 Mathematical properties

The following theorem is proven in [1].

Theorem 1. Let u0 ∈ W 1,∞(Ω). (i) Then, for any T > 0, there exists a
unique solution, u ∈ C([0,∞)×Ω)∩L∞(0, T ;W 1,∞(Ω)), of Problem P. More-
over,

inf
Ω

u0 ≤ u ≤ sup
Ω

u0 in R+ × Ω.

(ii) Let v be a solution of Problem P corresponding to the initial data v0 ∈
L∞(Ω). Then, for all T ≥ 0, there exists a constant K which depends only on
‖u0‖W 1,∞ and ‖v0‖L∞ such that

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ K‖u0 − v0‖L∞(Ω). (1.3)

Remark 1. The solution ensured by this theorem is not, in general, a classical
solution. The notion of solution employed in [1] is that of viscosity solution,
which coincides with the classical solution if it is regular enough. Since we will
not enter in further discussions about regularity, we refer the reader to [1, 5]
for technical details about this notion of solution.

Part (ii) of Theorem 1 is specially useful to us for the following reason.
Spectrograms of a signal are computed relative to windows, i.e, for each win-
dow a different spectrogram (image) is got. Then, the time-frequency charac-
teristics of the signal, like instantaneous frequency, look in a slight different
way if two different windows are employed. It, therefore, arises the question
of stability of the final images with respect to the windows, i.e., is it possible
that starting from two spectrograms of the same signal for different windows
the corresponding final images are very different from each other? The answer
is:
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Corollary 1. Let ϕ, ψ ∈ W 1,∞(R) be real, symmetric and normalized win-
dows and denote by u0 and v0 the corresponding spectrograms of a given signal
x ∈ L2(R). Let u and v be the solutions of Problem P corresponding to the
initial data u0 and v0, respectively. Then , for some constant c > 0,

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ c‖ϕ− ψ‖L2(R).

Proof. Let Gηx denote the Gabor’s transform of x relative to the window η.
The standard inequality

∣∣|a| − |b|∣∣ ≤ |a− b| implies∣∣∣|Gϕx(ω, t)|2 − |Gψx(ω, t)|2
∣∣∣ ≤ c1

∣∣∣|Gϕx(ω, t)| − |Gψx(ω, t)|
∣∣∣ (1.4)

≤ c1|Gϕx(ω, t)− Gψx(ω, t)|,
with c1 = ||Gϕx(ω, t)|+ |Gψx(ω, t)||. We have

|Gϕx(ω, t)− Gψx(ω, t)| ≤
∫

R

|x(s)(ϕ(s − t)− ψ(s− t))e−iωs|ds
≤ ‖x‖L2‖ϕ− ψ‖L2 . (1.5)

Taking the supremo in the left hand side of (1.4) and using (1.5) we obtain

‖u0 − v0‖L∞(Ω) ≤ (‖u0‖1/2L∞(Ω) + ‖v0‖1/2L∞(Ω))‖x‖L2‖ϕ− ψ‖L2 . (1.6)

Finally, property (1.3) implies the result. �
Another stability question solved by Theorem 1 is whether the transformed

spectrograms of two close signals relative to the same window are close or not.
Since the proof is a trivial modification of the proof of Corollary 1, we omit
it.

Corollary 2. Let x, y ∈ L2(R) be two signals and ϕ ∈ W 1,∞(R) be a real,
symmetric and normalized window. Let u0 and v0 be their spectrograms, and
u and v be the corresponding solutions of Problem P. Then, for some c > 0,

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ c‖x− y‖L2(R).

For example, if x, n are signals, with n denoting a noise with unitary energy in
L2, and we define y = x+εn, then, Corollary 2 implies that the corresponding
spectrograms at time τ satisfy

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ cε.

1.3 Numerical Experiments

In this section we present numerical demonstrations of the selective smoothing
edge enhancement algorithm of [1] applied to the spectrograms of synthetic
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and field signals. We compare the results with the following methods: the
2D Stationary Wavelet Transform (2D-SWT) for 2D signal denoising, the
Nonlinear Spectral Subtraction (NSS) based on [3] and the Stationary Wavelet
Transform (1D-SWT) for 1D signal denoising, based on [10]. First, we describe
the discrete PDE model.

1.3.1 PDE model discretization

We start by computing the spectrogram by applying the dfft to the convolution
of the signal with the window. The dfft is evaluated in time intervals of size
2w, with the width, w, usually in the range 8 − 12. To obtain an image as
continuous as possible, time intervals are overlapped according to the value of
p ∈ (0, 1). In each of these intervals, we perform the convolution of the signal
with a normalized discrete gaussian window with support on (−t0/2, t0/2)
and variance σ = t0/3, where t0 is the size of the time intervals (increasing
with w).

Once the spectrogram is produced, it is normalized in the usual digital
image range [0, 255], obtaining in this way the initial datum for Problem P.
We use a time explicit Euler scheme with finite differences in space to find
the numerical approximation of the solution, u. We follow the discretization
indicated in [1].

Summarizing, the parameters in the model come from three sources: the
spectrogram definition, the image processing PDE and its numerical imple-
mentation. From the first we get the variance of the gaussian window, σ, which
is determined by the width, w, and the overlapping, p. From the PDE we have
the enhancement parameter, ε and the scale parameter, s. Finally, from the
discretization we have the evolution step, dτ , and the number of advances or
iterations, k. In the experiments, we keep fixed those parameters which seems
to be less sensible. More precisely, we always take

p = 0.99, ε =
1
2

max |∇u0|, s = 1, dτ = 0.1.

Hence, the only parameters we play with in the experiments are w and k. Both
are very related to the computer execution time since the width determines
the time-frequency grid size. It is not clear how to fix them a priori. On one
hand, the width is related to the smoothness of the discrete spectrogram and
variations of this parameter may induce breaks in the lines of instantaneous
frequencies, among other effects. Similarly, when the number of iterations
increases the image gets more and more diffused making possible that some
not very neatly defined edges may disappear.

1.3.2 Comparisons and results

To show the advantages of our technique, in the subsequent plots we used
a simple algorithm to produce candidates to IF lines of the corresponding
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spectrograms. Let Ω = [0, T ] × [0, F ] be the time-frequency domain of the
image and u : Ω→ [0, 255] be the starting image. We consider its truncation

v(t, ω) =
{
u(t, ω) if u(t, ω) ≥ β

0 elsewhere,

with β = MeanΩ(u) in the experiments. For each t ∈ [0, T ], we consider the
N connected components of the set {ω ∈ (0, F ) : v(t, ω) > 0}, say Cn(t), for
n = 1, . . . , N(t), and define the function

IF(t, n) =

∫
Cn(t)

ωv(t, ω)dω∫
Cn(t)

v(t, ω)dω
, (1.7)

which is the frequency gravity center of the component Cn(t). In this way, we
shrink each connected component to one point to which we assign the average
image intensity through the function INT(t, n) = MeanCn(t)(v(t, ·)). Finally,
we plot function IF only for components with averaged intensity, INT, greater
than a certain threshold, i ∈ [0, 255]. This final image does not seem to be
very sensible under small perturbations of the parameters β and i.

Experiment 1. We illustrate some noise reduction algorithms applied to a
synthetic signal having in mind that our aim is to obtain a good spectrogram
representation of the signal for later IF recognition, and not the 1D signal
restoration. We used the following methods: our PDE based algorithm, the 1D
and 2D Stationary Wavelet Transforms (SWT), see [10, 14], and the Nonlinear
Spectral Substraction Method (NSS), see [3]. Among these, only the spectral
based methods gave good results. The 1D SWT, based in high frequencies
filtering of a multi-frequency model, do not produce, as it was expected, good
spectrogram images for the processed signal. Therefore, we only show the
results concerning the spectral based methods.

We used a one sec. 6KHz synthetic signal composed by the addition of two
signals. The first is an addition of pure tones and chirps,

x1(t) = c1(sin 2π1000t+ sin 2π1100t+ sin 2π1300t2 + sin 2π800t3),

while the second, x2, is a uniformly distributed real random variable. We
normalize them to have unitary energy, ‖xi‖L2 = 1 (so the constant c1), and
define the test signal as x = x1+x2, i.e., with SNR = 0 dB. We fix the window
width as w = 10 and perform k = 50 iterations of the PDE algorithm.

In Fig. 1.1, we show the spectrograms of the clean and noisy signals, x1

and x, respectively, and the spectrogram resulting from the PDE algorithm.
Notice that even for very close instantaneous frequency lines, the PDE pro-
cessed spectrogram keeps them separated, despite being produced by a diffu-
sive transformation of the noisy signal.

In Fig. 1.2, we plot the IF function defined by (1.7), obtained from the
outputs of the PDE, the 2D-SWT and the NSS methods, for threshold levels
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Fig. 1.1. Spectrograms of a synthetic signal with SNR = 0, (Experiment 1).

i = 5 and i = 10, respectively. We observe that both the PDE and the 2D-
SWT perform much better than the NSS. It is also noticeable that the PDE
method is less sensible to variations of the threshold level than the 2D-SWT.

We finally computed two objective 1D signal quality measures of the per-
formance of the PDE and the 2D-SWT models: the SNR and the segmented
SNR (for 200 frames). We obtained the following figures:

SNRPDE = 3.04, SGM− SNRPDE = 3.75,
SNRSWT = 2.12, SGM− SNRSWT = 2.87,

showing some better performance of the PDE model against the SWT model,
in this example.

Experiment 2. We used a recording by [11], from where we extracted a
signal of app. 0.55 sec. which is affected by a strong background noise. We set
the window width w = 10, and performed k = 200 iterations. In the first row
of Fig.1.3 we plot the spectrogram of the original signal (initial datum) and
the processed spectrogram, and in the second row, the corresponding IF lines
for the threshold value i = 3. We identify three possible howls, one with two
harmonics in the approximated steady frequencies 400 and 800 Hz, another
in about 600 Hz (decreasing in time), and finally, another with two harmonics
starting at 1000 (decreasing) and 700 Hz, respectively, although the latter
becomes too weak to be detected after a while. We notice the large qualitative
difference between the IF lines detection of the noisy and the processed image,
plotted in the second row.

1.4 Conclusions

This research establishes the first step of a new methodology for estimating
wolves populations by analyzing their chorus field recorded signals with signal
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Fig. 1.2. IF lines corresponding to Experiment 1 for the unprocessed spectrogram
and for the spectrogram processed by the PDE, 2D-SWT and NSS methods. First
and second rows correspond to the threshold level i = 5. Second and third rows to
i = 10.



1 PDE-based spectrogram image restoration 11

Fig. 1.3. Spectrograms and IF lines (Experiment 2) of a very noisy field recorded
signal. The threshold level is taken as i = 3.

and image processing techniques, e.g., the noise reduction of the image repre-
senting a time-frequency distribution of the signal, such as the spectrogram.
The second step, consisting on identifying the instantaneous frequency lines
corresponding to each individual, is in progress.

A possible framework for the spectrogram image analysis, the use of par-
tial differential equations based models, is investigated. We deduced stability
results for the processed spectrogram with respect to perturbations due to
noise or to changes of window functions. We demonstrated this technique on
field recorded signals and artificial signals. For the latter, we compared the
results with other well known techniques. These comparisons indicate, on one
hand, that the use of image denoising wavelet based methods give similar re-
sults than the PDE method and it is, therefore, an alternative to take into
account. On the other hand, denoising algorithms acting directly on the one-
dimensional signal do not provide good spectrogram images for the second
step of the method, the IF estimation.
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Summary. Previous formulations of the global Mean Shift clustering algorithm
incorporate a global mode finding which requires a lot of computations making it
extremely time-consuming. This paper focuses on reducing the computational cost in
order to process large document images. We introduce thus a local-global Mean Shift
based color image segmentation approach. It is a two-steps procedure carried out by
updating and propagating cluster parameters using the mode seeking property of
the global Mean Shift procedure. The first step consists in shifting each pixel in the
image according to its R-Nearest Neighbor Colors (R-NCC ) in the spatial domain.
The second step process shifts only the previously extracted local modes according
to the entire pixels of the image.

Our proposition has mainly three properties compared to the global Mean Shift
clustering algorithm: 1) an adaptive strategy with the introduction of local con-
straints in each shifting process, 2) a combined feature space of both the color and
the spatial information, 3) a lower computational cost by reducing the complexity.
Assuming all these properties, our approach can be used for fast pre-processing of
real old document images. Experimental results show its desired ability for image
restoration; mainly for ink bleed-through removal, specific document image degra-
dation.

Key words: Mean Shift, segmentation, document image, restoration, ink bleed-
through removal.

2.1 Introduction

Image segmentation techniques play an important role in most image analysis
systems. One of their major challenge is the autonomous definition of color
cluster number. Most of the works require an initial guess for the location or
the number of the colors or clusters. They have often unreliable results since
the employed techniques rely upon the correct choice of this number. If it is
correctly selected, good clustering result can be achieved; otherwise, image
segmentation cannot be performed appropriately. The Mean Shift algorithm,
originally advanced by Fukunaga [1], is a general nonparametric clustering
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technique. It does not require an explicitly definition of the cluster number.
This number is obtained automatically.It is equal to the number of the ex-
tracted centers of the multivariate distribution underlying the feature space.
Advantages of feature space methods are the global representation of the orig-
inal data and the excellent tolerance to noise. This property is a robust process
for degraded document images that legibility is often compromised due to the
presence of artefacts in the background [2]. Processing of such degraded doc-
uments could be of a great benefit, especially to improve human readability
and allow further application of image processing techniques. Under its orig-
inal implementation, the global Mean Shift algorithm cannot be applied on
document images. In fact, documents are generally digitized using high reso-
lution, which provides large digital images that slow down the segmentation
process. Therefore, with the increase of the pixel numbers in the image, find-
ing the closest neighbors of a point in the color space becomes more expensive.
In this paper, we propose an improved Mean Shift based two-steps clustering
algorithm. It takes into account a constrained combined feature space of the
both color and spatial information. In the first step, we shift each pixel in the
image to a local mode by using the R-Nearest Neighbor Colors in the spatial
domain. These neighbors are extracted from an adaptative sliding window
centred upon each pixel in the image. R represents an arbitrary predefined
parameter. In the second step, we shift ,using all pixels,the previously ex-
tracted local modes to global modes. The output of this step is a collection of
global modes. These modes are candidate cluster centers.

This paper is organized as follows. Section 2 describes briefly the global
Mean Shift clustering algorithm using the steepest ascent method. The pro-
posed algorithm with local constrained Mean Shift analysis is introduced and
analyzed in Section 3. Experimental segmentation results, using our propo-
sition for degraded document image restoration and more precisely for ink
bleed-through removal, are presented in section 4.

2.2 The global Mean Shift: Overview

Before treating the proposed algorithm based on a local-global Mean Shift
procedure, we would explain the global Mean Shift and its related clustering
algorithm in brief [3]. For a given image with N pixels, we use xi to denote
the observation at the ith color pixel. {xi}i=1···N is an arbitrary set of points
defined in the Rd d -dimensional space and k the profile of a kernel K such
that:

K(x) = ck,d k(‖x‖2) . (2.1)

The multivariate kernel density estimator, with kernel K(x)and window radius
(bandwidth) h is given by:

f̂(x) =
ck,d
nhd

N∑
i=1

k(
∥∥∥∥x− xi

h

∥∥∥∥2

) . (2.2)
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Although other kernels could be employed, we restrict this Mean Shift study to
the case of the uniform kernel. The standard Mean Shift algorithm is defined
as steepest gradient ascend search for the maxima of a density function. It
requires an estimation of the density gradient using a nonparametric density
estimator [3]. It operates by iteratively shifting a fixed size window to the
nearest stationary point along the gradient directions of the estimated density
function

∇f̂h,k(x) =
2ck,d
nhd

N∑
i=1

∇k(
∥∥∥∥x− xi

h

∥∥∥∥2

)

=
ck,d

nhd+2

N∑
i=1

g(
∥∥∥∥x− xi

h

∥∥∥∥2

)

[∑N
i=1 xig(

∥∥x−xi

h

∥∥2)∑N
i=1 g(

∥∥x−xi

h

∥∥2)
− x

]
. (2.3)

We denoted
g(x) = −k′(x) (2.4)

which can in turn be used as profile to define a kernel G(x) where

G(x) = cg,d g(‖x‖2) . (2.5)

The kernel K(x) is called the shadow of G(x) [3]. The last term (6)

mh,G(x) =
∑N
i=1 xig(

∥∥x−xi

h

∥∥2)∑N
i=1 g(

∥∥x−xi

h

∥∥2)
− x (2.6)

shows the Mean Shift vector equal to the difference between the local mean
and the center of the window. One characteristic of this vector, it always
points towards the direction of the maximum increase in the density. The
converged centers correspond to the modes or the centers of the regions of
high data concentration. Figure 2.1 illustrates the principle of the method. The
window tracks signify the steepest ascent directions. The mean shift vector,
proportional to the normalized density gradient, always points toward the
steepest ascent direction of the density function. It can be deducted that
searching the modes of the density is performed by searching the convergent
points of the mean shift without estimating the density [3].

The global Mean Shift clustering algorithm can be described as follows:

1. Choose the radius of the search window,
2. Initialize the location of the window xj , j = 1,
3. Compute the Mean Shift vector mh,G(xj),
4. Translate the search window by computing xj+1 = xj + mh,G(xj), j =

j + 1,
5. Step 3 and step 4 are repeated until reaching the stationary point which

is the candidate cluster center.



16 Fadoua Drira, Frank Lebourgois, Hubert Emptoz

Fig. 2.1. Mean Shift mode finding: Sucessive computations of the Mean Shift define
a path to a local density maximum

2.3 A local-global Mean Shift algorithm

2.3.1 The proposed local Mean Shift

The global Mean Shiftalgorithm, under its original form, defines a neighbor-
hood around the current point in the feature space related to the color infor-
mation. The neighborhood refers to all the pixels contained in the sphere of a
given arbitrary radius σR centred on the current pixel. It is extracted from a
fixed size window and used for the Parzen window density estimation. Apply-
ing Mean Shift leads to find centroids of this set of data pixels. The proposed
Mean Shift algorithm called the local Mean Shift algorithm is an improved ver-
sion of the global Mean shift algorithm by reducing its complexity. Our main
contribution consists in introducing a constrained combined feature space of
the both color and spatial information. Constraints are mainly introduced in
the definition of a neighborhood necessary for the estimation of the Mean
Shift vector. Therefore, we introduce the concept of a new neighborhood de-
fined by the R-Nearest Neighbor Colors . It represents the set of the R nearest
colors in the spatial domain extracted from an adaptative sliding window cen-
tred upon each studied data pixel in the image. R is an arbitrary predefined
parameter. More precisely, we define the R-NNC(X) the R spatially nearest
points from a given pixel X and having a color distance related to X less than
σR.The studied neighborhood of each pixel in the image, originally detected
in a fixed window width, is modified in order to be defined from a gradually
increasing window size. Starting from a 3x3 window size centred on a given
data pixel X, we set for each neighbor Y within the window its color distance
from X. Then, we record all the neighbors having a color distance less than
an arbitrary fixed value σR. If the number of the memorized data pixels is
less than a fixed arbitrary value R, we increase the size of the window. We
iterate the process of neighbors’ extraction and window increasing while the
desired number of neighbor’s or the limit size of the window is not reached.
The selection of the neighbors is as follow:
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R−NNC(X) =
{
Y/dcolor(X,Y ) < σR is the spatially

nearest neighbor of X

}
Intuitively, using here a progressive window size is of beneficial. This comes

from the fact that computation of the mode is restricted inside a local window
centred on a given data pixel and more precisely restricted on the colorimetri-
cally and spatially nearest neighbors. By doing so, we guarantee an accurate
convergence of the Mean Shift in few iterations. Figure 2.2 illustrates an ex-
ample of the Mean Shift vector direction that points towards the direction
of the most populated area. Furthermore, it is evident that the local mode
closest to the value of the central pixel is a far better estimate of the true
value than the average of all color values.

Fig. 2.2. Scan of a manuscript and a zoom on a located window in the L*u*v* cube
after local Mean Shift application. Blue points are the R neighbors; red circle is a
studied data image pixel; yellow circle is the extracted local mode.

2.3.2 The proposed segmentation algorithm

The proposed segmentation algorithm follows the steps as below:

1. Run the local Mean Shift algorithm starting from each pixel X of the
data set (converted to the feature space L*u*v* ) and shifting over the
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R-NNC(X) neighborhood. Once all the data pixels are treated, different
local maxima of pixel densities are extracted.

2. Run the global Mean Shift algorithm starting from the extracted local
modes and shifting over all pixels of the data image to reach the global
maxima.

3. Assign to all the pixels within the image the closest previously extracted
mode based on their color distance from each mode. The number of signif-
icant clusters present in the feature space is automatically established by
the number of significant detectedmodes. Therefore, the global extracted
modes can be used to form clusters.

Based on the above steps, it is clear that the first one generates an initial
over-segmentation. This can be considered as a good starting point for the
second step which is important to find the global modes. In fact, the over-
segmentation is absolutely related to an important number of the local ex-
tracted modes. This number depends mainly on the R predefined value. If the
value of R increases, the number of the extracted modes decreases. Conse-
quently, choosing small values reduce neighbor’s number related to each given
data image pixel. Hence, we generate an important number of the extracted
local modes after the first step. Figure 2.3 illustrates in the first three instances
the distribution of the extracted local modes for different value of R. All these
values are given as an example and they change enormously from one image
to another. Nevertheless, the given interpretation remains the same. The last
instance in figure 2.3 gives an idea about the distribution of the extracted
global modes after the second step. This result is obtained for R=25.

Fig. 2.3. From left to right: the three first figures correspond to the distribution of
The K extracted local modes for different R values:R=25, K=870; R=100, K=431;
R=400, K=236 repectively ;The last figure is related to the distribution of the N
global modes for R=25 given as an example

2.3.3 Complexity estimation

The application of the local Mean Shift as a first step has a strong impact on
the computational time as well as on the quality of the final result. This step is
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important to provides efficient starting points for the second step. These points
are sufficiently good local maxima. Therefore, finding global modes, which is
the aim of the second step, will be performed with a reduced complexity. The
final results, as it will be illustrated in the next section, are more likely to be
satisfactory. Without optimisation, the computational cost of an iteration of
the global Mean Shift is O(N×N), where N is the number of image pixels.
The most expensive operation of the global Mean Shift algorithm is finding
the closest neighbors of a point in the color space. Using the most popular
structures, the KD -tree, the complexity is reduced to O(N log N) operations,
where the proportionality constant increases with the the space dimension.
Obviously, our proposition reduces this time complexity, in the ideal case, to
O(N×(R+M)), where R is the number of the spatially and colorimetically
nearest neighbors and M the number of the extracted local modes after the
first step. The value of M depends on the content of the processed images.
Therefore, we are unable to estimate in advance the computational time.

2.3.4 Performance comparison

The proposed local-global Mean Shift clustering algorithm is an improved ver-
sion of the global Mean Shift. Moreover, our proposition takes benefit from
a combined feature space that consists in a combination of the spatial co-
ordinates and the color space. Such space has been already proposed in the
literature as a modified Mean Shift based algorithm, we note it here as the
spatial Mean Shift [4]. The main difference between these three procedures is
correlated to the neighborhood of each data pixel. We note N global MS(X),
N spatial MS(X)and N local MS(X) the studied neighborhood related respec-
tively to the spatial, global and local-global Mean Shift in a first step iteration
and for a given data pixel X.

N global MS(X) = {Y/dcolor(X,Y ) < σR}
N spatial MS(X) = {Y/dcolor(X,Y ) < σR and dspatial(X,Y ) < σS}
N local MS(X) = {R-NNC(X)}

For instance, the N global MS(X) involves all data pixels in the image having a
color distance from X less than σR, a fixed size window. The N spatial MS(X)
represents the set of neighbors having a color distance from X less than σR and
located in a distance less than σS in the spatial domain. Compared to these
two procedures, if their studied neighborhood is detected in a fixed window
width including the color information in the global Mean Shift and the both of
color and spatial information in the spatial Mean Shift, the local Mean Shift is
not restricted to a fixed window size. It depends on the total number of spatial
neighbors having a color distance less than σR. Therefore, the N local MS(X)
is defined from a gradually increasing window size until reaching a predefined
number of neighbors. If the global Mean Shift algorithm is a time-consuming
process, the spatial Mean Shift achieves a low computational cost with efficient
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final results for image segmentation. One question, could be evoqued here, why
defining a local-global Mean Shift algorithm if we already have an efficient
improved Mean Shift with lower complexity? In fact, the segmented image
with the spatial Mean Shift is generally over-segmented to a great number
of small regions. Some of them must be finally merged by using heuristics.
In the case of document images, the spatial Mean Shift clustering algorithm
is not efficient since it breaks the strokes of the handwritten foreground and
over-segments the background. Moreover, the major challenge of this Mean
Shift variant is the adaptive specification of the two window widths according
to the both of data statistics and color domains in the image. These two
parameters are critical in controlling the scale of the segmentation result. Too
large values result in loss of important details, or under-segmentation; while
too small values result in meaningless boundaries and excessive number of
regions, or over-segmentation. It is obviously that our proposition is different
from the spatial Mean Shift clustering algorithm as it is a two-steps algorithm.
The advantage of using the local Mean Shift followed by the global Mean Shift
rather than the direct use of the spatial Mean Shift is twofold. First, we can
omit the use of statistics to merge regions detected after a spatial Mean Shift
application in order to have significant parts. Second, we guarantee to generate
a sufficient neighbor’s number necessary in the shifting process. Figure 2.4
illustrates the final result obtained after the three procedures application on
an extract of a document image.

Fig. 2.4. From left to right: an extract of a bleed-through degraded document, the
segmented image with the global Mean Shift, the segmented image with the spatial
Mean shift and the segmented image with the local-global Mean Shift
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2.4 Experimental results: Segmentation for document
image restoration

2.4.1 Problem statement

Image segmentation and denoising are two related topics and represent funda-
mental problems of computer vision. The goal of denoising is to remove noise
and/or spurious details from a given corrupted digital picture while keeping
essential features such as edges. The goal of segmentation is to divide the
given image into regions that belong to distinct objects. For instance, our
previous work [2] proposes such technique application as a solution for the re-
moval of ink bleed-through, a specific degradation for document images. This
degradation is due to the paper porosity, the chemical quality of the ink, or
the conditions of digitalization. The result is that characters from the reverse
side appear as noise on the front side. This can deteriorate the legibility of
the document if the interference acts in a significant way. To restore these
degraded document images, this noise is simulated by new layers at different
gray levels that are superposed to the original document image. Separating
these different layers to improve readability could be done through segmen-
tation/classification techniques. In a first study, we tested the performance of
the most popular algorithm among the clustering ones, the K -means, known
for its simplicity and efficiency. Nevertheless, this technique remains insuffi-
cient for restoring too degraded document images. Indeed, ink bleed-through
removal could be considered as a three-class segmentation problem as our aim
consists in classifying pixel document images into (1) background, (2) original
text, and (3) interfering text. According to this hypothesis, a K -means (K=3)
might be sufficient to correctly extract the text of the front side. But this is
not the case (Fig.2.5).

Fig. 2.5. Results of the 3 -means classification algorithm on a degraded document
image

Intuitively, other variants of the K -means clustering algorithm are em-
ployed to resolve this problem. In this study, we will focus on techniques based
on the extension of K -means. For a complete sate-of-the-art ink bleed-through
removal techniques, please refer to our previous work [2]. One variant based
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on a serialization of the K -means algorithm consists in applying sequentially
this algorithm by using a sliding window over the image [5]. This process leads
to an automatic adjust of the clusters during the windows displacement, very
useful for a better adaptation to any local color modification. This approach
gives good results but it is a supervised one as the choice of some parame-
ters such as the number of clusters and the color samples for each class are
not done automatically. We reveal this problem mainly when the text of the
front side has more than one color. This problem remains also problematic
to another variant of the K -means algorithm applied on degraded document
images. This variant [6] consists in a K -means (K=2) recursive application on
the decorrelated data with the Principal Component Analysis (PCA). It gen-
erates a binary tree that only the leaves images satisfying a certain condition
on their logarithmic histogram are processed. The definition of the number of
classes is avoided here and the obtained results justify the efficiency of this
approach. Nevertheless, for a document image having more than one color
on the text of its front side, a certain number of leaves images correspond-
ing to the number of colors used in the front text must be combined. In this
case, the choice of these different leaves cannot be done automatically and the
intervention of the user is obviously necessary.

Consequently, the accuracy of such techniques related to the accuracy of
K -means clustering results is inevitably compromised by 1) the prior knowl-
edge of the number of clusters and 2) the initialisation of the different centers
generally done randomly. The K -means clustering can return erroneous results
when the embedded assumptions are not satisfied. Resorting to an approach
which is not subject to these kind of limitations will certainly leads to more
accurate and robust results in practice. Moreover, ink bleed-through gener-
ates random features that only powerful flexible segmentation algorithm could
cope with it. Intuitively, according to our study, we have noticed the flexibility
of a statistical data based segmentation algorithm which can accurately clas-
sify random data points into groups. One of the most promising techniques
of this category is the Mean Shift which represents the core technique of our
proposition; the local-global Mean Shift algorithm.

2.4.2 Performance evaluation

Experiments were carried out to evaluate the performance of our approach
based on a modified Mean Shift algorithm. For our simulations, we set σR,
the minimum color distance between a starting point and its neighbor, to
the value of 6 and the number R of the extracted neighbors to the value of
25. Results of applying the proposed approach on degraded document images
are displayed in the figure 2.6. These documents, which have been subject
to ink bleed-through degradation, contain the content of the original side
combined with the content of the reverse side. These images are first mapped
into the L*u*v* feature space. This color space was employed since its metric
is a satisfactory approximation to Euclidean distance. Then, we apply our
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algorithm to form clusters. The images resulting from the application of our
approach on the degraded document images, shown in the figure 2.6, are
correctly restored. We clearly notice, compared with the test images, that the
interfering text has been successfully removed. Moreover, the segmentation
obtained by this technique looks as similar as or better than that obtained by
the global Mean Shift (Fig.2.4). The important improvement is noticed with
a significant speedup. This is due to the selective processing of the data image
pixels ; only the R nearest color neighbors to a given pixel are processed. By
modifying the global Mean Shift algorithm, we reduce the number of iterations
necessary for finding the different modes and thus to achieve convergence. In
fact, the processing of a 667X479 color document image with R=25 and σR=6,
is done in 470 seconds with our proposition and in approximately 19 hours
with the global Mean Shift algorithm. The first step of our method generates
1843 local modes and takes 70 seconds. The second step, consisting in shifting
these modes according to all data pixels takes 400 seconds. For the global
Mean Shift algorithm, we have 319493 pixels to shift according to all data
pixels. This clearly explains the high computational cost time. These different
values are related to the second horizontal original color image of the figure
2.6.

2.5 Conclusion

We have presented in this study an improvement of the global Mean Shift
algorithm in order to reduce its computational cost and thus making it more
flexible for large document image processing. Our proposition, called the local-
global Mean Shift clustering algorithm, has been successfully applied for doc-
ument image restoration, more precisely for ink bleed-through removal. This
algorithm is validated with good results on degraded document images. Our
goal was to produce an algorithm that retains the advantages of the global
Mean Shift algorithm but runs faster. This is correctly achieved. Nevertheless,
the performance of our proposition is dependent on the minimum distance that
must be verified between a given pixel and its neighbor that it will be included
in the first shifting process. This distance is defined the same in the different
steps of the algorithm. In this context, the local-global Mean Shift algorithm
could be a subject of ameliorations. For instance, this color distance could vary
from one iteration to another. This could be based on predifined contraints.
Varying this number could add an adaptative strategy with better results.
Subsequent investigations in not applying the Mean Shift procedure to the
pixels which are on the mean shift trajectory of another (already processed)
pixel could also be done. Our future research will investigate all these different
ideas and test the proposed method on a large set of document images.
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Fig. 2.6. Original bleed-through degraded document images and their restored
version with our proposed local-global Mean Shift algorithm
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Summary. The problem of adaptive CFAR regulation in a pulse-to-pulse partially
Rayleigh correlated clutter is addressed. The clutter is modeled as a first-order
Markov Gaussian process and its covariance matrix is assumed to be known. The
theorem of residues is used to derive an exact expression for the probability of false
alarm Pfa for the mean level (ML) detector. We show that it depends on the degree
of pulse-to-pulse correlation of the clutter samples.
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3.1 Introduction

From experimental data, clutter is modeled by either Rayleigh, log-normal,
Weibull, or K distribution [1-3]. Dealing with either single pulse or multiple
pulses or even distributed architectures with correlated clutter samples mod-
els, aims for improved detection while maintaining a constant false alarm rate
have led to consideration of several types of adaptive CFAR detectors.

The problem of partially correlated clutter has been treated in [4-7]. In
[4] Farina et al considered the problem of detecting pulse-to-pulse partially
correlated target returns in pulse-to-pulse partially correlated clutter returns.
They suggested a batch detector and a recursive detector to estimate the
clutter covariance matrix. They showed, by Monte Carlo simulations, that
the threshold multiplier is independent of the degree of pulse-to-pulse corre-
lation among the clutter samples for a number of range cells around ten. In
[5], Himonas et al proposed the Generalized GCA-CFAR detector that adapts
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not only to changes in the clutter level but also to changes in the clutter co-
variance matrix, i.e., they considered the case where the correlated statistics
of the received clutter returns are unknown. In their analysis, they assumed
a single pulse, processing a spatially correlated clutter whereas in the ML-
CFAR detector, we treat multiple pulses, processing a pulse-to-pulse partially
correlated Rayleigh clutter. They also assumed Markov’s type homogeneous
clutter of much higher power than thermal noise. Al Hussaini et al studied in
[6] the detection performance of the CA-CFAR and OS-CFAR detectors con-
sidering a non conventional time diversity technique. Their schemes processed
correlated clutter in the presence of interfering targets. In [7], El Mashade
introduced the case where the use of the moving target indication (MTI) fil-
ter output introduces a correlated clutter even though if its input signal is
uncorrelated. He analyzed the CA-CFAR family for the multiple target envi-
ronments scenario.

In summary, the work listed above did not show the effect of the pulse-
to-pulse partially Rayleigh correlated clutter on the analytical expression of
the Pfa. All of this, has led us to introduce, in this chapter, a mathematical
model to represent the general case of processing a pulse-to-pulse partially
Rayleigh correlated clutter and Rayleigh but uncorrelated thermal noise. The
chapter is organized as follows. In Section 3.2, we formulate the statistical
model and set the assumptions. Then, in Section 3.3, we investigate the effect
of the temporal correlation of the clutter on the probability of false alarm
and particularly on the CFAR parameter T for the ML detector employing
M -pulse noncoherent integration. Next, in Section 3.4, we show, by means
of computer simulation, the effect of the degree of correlation of the clutter
returns and the number of processed pulses M , on the threshold multiplier
T and on the probability of false alarm as well. As a conclusion, Section 3.5
summarizes the results of this contribution.

3.2 Statistical Model

The received signal r(t) is processed by the in-phase and quadrature phase
channels. Assuming a target embedded in correlated noise, the in-phase and
quadrature phase samples {uij} and { vij} at pulse i and range cell j, re-
spectively, i = 1, 2, 3, . . ., M and j = 1, 2, 3, . . ., N , are observations from
Gaussian random variables. M and N are the number of radar processed
pulses and the number of reference range cells, respectively. Assuming that
the total clutter plus noise power is normalized to unity, the integrated output
of the square law detector is given by

qj =
1
2

M∑
i=1

{
u2
ij + v2

ij

}
j = 1, 2, . . ., N (3.1)

where
uij = aij + cij i = 1, 2, . . ., N and j = 1, 2, . . . , N (3.2)
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vij = bij + dij i = 1, 2, . . ., N and j = 1, 2, . . ., N (3.3)

The aij , cij , bij and dij represent the in-phase and quadrature phase samples of
the correlated clutter and the thermal noise, respectively. The clutter samples
are assumed to be first-order Markov processes with zero mean and variance
σ2
c and are identically distributed but correlated (IDC) from pulse-to-pulse

and uncorrelated from cell-to-cell. The thermal noise samples are assumed
to be independent and identically distributed (IID) random variables with
zero mean and variance σ2

n from pulse-to-pulse and from cell-to-cell. The co-
variance matrices of the clutter and noise processes are denoted Λc and Λn,
respectively.

Let the overall clutter plus noise variance be σ2
cn = σ2

n+σ2
c and define the

clutter-to-noise ratio as CNR = σ2
c

σ2
n
. Thus, the (i, j)thelement of the pulse-to-

pulse covariance matrix Λcn, can be shown to be [5]

[Λcn]i,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ2
cn

(
δij+CNR
1+CNR

)
ρ
|i−j|
c 0 < ρc < 1

σ2
cn δij ρc = 0

σ2
cn

(
δij+CNR
1+CNR

)
ρc = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.4)

Note that this correlation model is exponentially decaying as a function of
time difference |i− j|. ρc� exp (−Tωc), is the correlation coefficient between
pulse-to-pulse received clutter samples, T is the pulse repetition interval (PRI)
and fc� ωc

2π is the mean Doppler frequency of the clutter signal [5]. δij is the
Kronecker delta. For convenience, we assume that the clutter is stationary
and that the PRI is constant.

In the absence of a target, the detection performance is based upon the
statistics of q, which is given by

q =
1
2

M∑
i=1

{u2
i + v2

i } (3.5)

where
ui = ai + ci i = 1, 2, . . . , M (3.6)

vi = bi + di i = 1, 2, . . . , M (3.7)

The ai, ci, bi anddi represent the in-phase and quadrature phase samples of
the correlated clutter and the thermal noise, respectively. In vector form, by
accommodating M × 1 vectors, we have

q =
1
2
{|U|2 + |V|2} (3.8)

where
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U = A + C (3.9)

V = B + D (3.10)

The system under consideration assumes that the random vectors A and
B are IID stationary Gaussian and that the noise signal is additive. The test
cell q is then compared to the adaptive threshold TQ to make a decision H0,
according to the following hypothesis test

q >
H0

TQ (3.11)

where Q denotes the estimated background level and H0 denotes the absence
of a target.

3.3 Evaluation of the False Alarm Probability

According to equation (3.11), the probability of false alarm of a CFAR detector
can be obtained by using the contour integral, which can also be expressed in
terms of the residue theorem as [8, 9]

Pfa = −
∑
i0

res
[
s−1Φq|H0 (s)ΦQ(−Ts), si0

]
(3.12)

where res [ . ] denotes the residue. si0 (i0 = 1, 2, . . .) are the poles of the
moment generating function (mgf) Φq|H0 (s), from a noise background, lying
in the left-hand of the complex s-plane. ΦQ(−Ts) is the mgf of the estimated
background level at s = −Ts.

To simplify the analysis, we confine our attention, in the remainder of this
chapter, to the case where the clutter power is much higher than the thermal
noise power, i.e., the overall covariance matrix Λcn given by equation (3.4) is
approximated by the clutter covariance matrix Λc and σ2

cn = σ2
c .

In order to derive an expression for the Pfa, we must evaluate the mgf
Φq|H0 (s) of the test cell q in the absence of the target and the mgf ΦQ(−Ts)
of the background level. The block diagram of the ML-CFAR detector inte-
grating M pulses is given by Fig. 28.1.

3.3.1 Mgfs of the Test Statistic and the Background Noise

The mgf of q in the absence of the target can be obtained as [5]

Φq|H0 (s) =
∫ +∞

−∞
p (q|H0) exp (−sq) dq (3.13)

where p (q|H0) is the probability density function (pdf) of the test cell q
under hypothesis H0. Note that Φq|H0(s) is the Laplace transform ofp (q|H0).
Substituting equation(3.8) for q, we can write
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Fig. 3.1. ML-CFAR detector

Φq|H0 (s) =
∫ +∞

−∞

∫ +∞

−∞
p (U,V) exp

[
−1

2
s
(
|U|2 + |V|2

)]
dU dV (3.14)

Assuming that the clutter power is much higher than the thermal noise
power, we can write in terms of the clutter vectors

Φq|H0 (s) =
∫ +∞

−∞

∫ +∞

−∞
p (A,B) exp

[
−1

2
s
(
|A|2 + |B|2

)]
dA dB (3.15)

Since the in-phase and quadrature phase samples of the clutter are IID, the
joint pdf p (A,B) may be written as p (A,B) = p (A)p (B) and p (A) = p (B).
p (A) is the multivariate Gaussian pdf with zero mean and covariance matrix
Λc which gives rise to partially correlated clutter signals [10]. Thus

p (A) =
1

(2π)
M
2 |Λc| 12

exp

(
−1

2
ATΛc

−1A
)

(3.16)

where |. | denotes the determinant Note that when ρc → 1 the clutter samples
are completely correlated. This corresponds to a singular covariance matrix
Λc and equation (3.16) becomes [5]

p (A) =
1

(2π)
1
2
exp

(
−1

2
a1

2

) M∏
i=1

δ(ai − a1) (3.17)

where ai (i=1, 2, . . . , M) are the components of the in-phase clutter vector.
Combining equations (3.15) and (3.16) and after some simple mathematical
manipulations, the mgf of the cell under test under hypothesis H0 can be
expressed as
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Φq|H0 (s) =
1

| I + Λc s |

⎧⎪⎪⎨⎪⎪⎩
∫ +∞

−∞

exp
[− 1

2 AT
(
Λ−1

c + I s
)

A
]

(2π)
M/2

∣∣∣ (Λ−1
c + I s

)−1
∣∣∣1/2 dA

⎫⎪⎪⎬⎪⎪⎭
2

(3.18)

where I is the identity matrix. Since the integral equals unity, the mgf of q
under hypothesis H0 is

Φq|H0 (s) =
1

| I + Λc s | (3.19)

If the clutter signal arises from stationary process, then Λc is a symmetric
Toeplitz matrix with M distinct positive real eigenvalues denoted by βi, i =
1, 2, . . .,M . Therefore, the determinant of equation(3.19) may be expressed as
the product of its eigenvalues. Also, the background noise level Q is estimated
by the average of the N reference cells (Q =

∑N
n=1 qn). Since the qn, n =

1, 2, . . ., N, given by (1), are assumed to be IID and that we deal with uniform
clutter power, then the mgfs of the cell under test under hypothesis H0 and
the ML detector can be expressed, respectively, as

Φq/H0 (s) =
1

M∏
n=1

(1 + βns)
(3.20)

and
ΦQ (s) =

1
M∏
n=1

(1 + βns)
N

(3.21)

3.3.2 Analysis of the Probability of False Alarm

Since the probability of false alarm Pfa of the ML-CFAR detector is a function
of the pulse-to-pulse clutter correlation coefficient ρc, we derive expressions of
the Pfa for ρc = 0, ρc = 1 and 0〈ρc〈1.

Case 1. ρc = 0: In this case the clutter samples are statistically independent;
i.e., βn = 1, ∀n = 1, 2, . . . , M (Λc = I), and therefore equations (3.20) and
(3.21) reduce, respectively, to

Φq|H0 (s) =
1

(1 + s)M
(3.22)

and
ΦQ (s) =

1
(1 + s)MN

(3.23)

The poles of the mgf Φq/H0 (s) of q under hypothesis H0 are a simple pole
at s = −1 of multiplicity M lying in the left-hand s-plane. Thus, Substituting
equations (3.22) and (8.23) into equation (3.12), we can write
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Pfa |ρc=0 = − 1
(M − 1) !

dM-1

dsM-1

[
1

s (1− TCAs)MN

]
s=−1

(3.24)

Equation (3.24) can be expressed as [9]

Pfa |ρc=0 =
M∑
i=1

(
MN+i-2

MN-1

)
T i−1
CA

(1 + TCA)MN+i−1
(3.25)

We denoted T as TCA since, in this case, the clutter plus noise samples are
assumed IID. Equation (3.25) is the well known expression for the probability
of false alarm of the ML detector processing M pulses.

Case 2. ρc = 1: In this case, the clutter samples are completely correlated;
i.e., β1 = M and βn = 0 for n = 2, . . . ,M (Λc is singular), and therefore
equations (3.20) and (3.21) reduce, respectively, to

Φq/H0 (s) =
1

(1 + Ms)
(3.26)

and
ΦQ (s) =

1
(1 + Ms)N

(3.27)

The poles of the mgf Φq/H0 of q under hypothesis H0 are a simple pole at
s = − 1

M lying in the left-hand s-plane. Hence, substituting equations (3.26)
and (3.27) into equation (3.12), we can write

Pfa |ρc=1 =
1

(1 + T )N
(3.28)

The result of equation (3.28) can also be obtained intuitively. Indeed, if
ρc = 1, the clutter samples are expected to be the same (pair wise) from one
pulse to another. Therefore, the first pulse contains all the average signal clut-
ter power and the remaining pulses contain no signal clutter. In other words,
we are in a single pulse situation in which equation (3.28) is readily obtained.

Case 3. 0〈ρc〈1: In this case the clutter returns are partially correlated. The
poles of the mgf Φq|H0 of q under hypothesis H0 are at sn = − 1

βn
, n=1, 2,. . . ,

M. They are all distinct (Λc is a symmetric Toeplitz matrix) and all lie in the
left-hand s-plane. Hence, substituting equations (3.20) and (3.21) into equa-
tion (3.12) and assuming that the correlation coefficient ρc is known, we can
write, after some simple mathematical manipulations,

Pfa =
M∑
i=1

⎡⎣ M∏
j=1, j �=i

(
1− βj

βi

)−1 M∏
n=1

(
1 + T

βn
βi

)−N
⎤⎦ (3.29)
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Equation (3.29) shows that the actual probability of false alarm of the ML-
CFAR detector is a function of the number of reference cells N, the number
of processed pulses M, the threshold multiplier T and the correlation coeffi-
cient ρc. That is, for every value of the threshold T, there is a unique value
of ρc so that the actual probability of false alarm is equal to the prescribed
probability of false alarm. Therefore, the search for the threshold multiplier
T can be summarized by the following algorithm.

a) We assign a desired value of the Pfa and a given value of ρc.
b) We assume an initial value of T .
c)

i) If ρc = 0 then, we compute the Pfa using equation (3.25).
ii) If ρc = 1 then, we compute the Pfa using equation (3.28).
iii) If 0〈ρc〈1 then, we compute the Pfa using equation (3.29).

d) If the value of the Pfa from step c) is equal to the desired value of the Pfa
stop, otherwise go to step b).

The above procedure requires the knowledge of ρc which, in general, is not
available a priori. The value of ρc used in step a) is the estimated value of
the correlation coefficient between pulse-to-pulse neighboring clutter samples
[5]. However, it is practically reasonable to assume a known correlation coeffi-
cient ρc since the two-pulse moving target indication (MTI) causes the clutter
samples for a given range cell to be correlated from pulse-to-pulse and this
correlation can be easily determined [7]. This is the case we want to confine
our attention to.

3.4 Simulation Results

To evaluate the false alarm properties of the proposed model, we conducted
computer simulations. All clutter samples were generated from the correlation
models given by equation (3.16). We assume a reference window size of N=16
and design Pfa = 10−4. First, the threshold multipliers T are computed using
the algorithm listed in Section 3.3.2 to achieve the prescribed Pfa for values of
ρc going from 0 to 1, and for values of the number of processed pulses M = 2, 4
and 8. Fig. 28.2, shows a set of curves of T against ρc. We observe that, for the
prescribed Pfa, all curves increase monotonically with ρc to converge to the
same value at ρc = 1. Therefore, for a given M , a variety of choices for T are
then possible. The choices of the threshold multipliers that assume the actual
clutter correlation provide a good regulation of the Pfa as shown in Fig. 28.3.
However, the curves for ρc = 1 and ρc = 0, do not assume that the clutter
correlation is changing, and therefore the prescribed Pfa is not achieved. Our
ML-CFAR detector assumes knowledge of the value of ρc and then computes
the corresponding T .
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Fig. 3.2. Threshold multiplier against clutter correlation coefficient for N = 16 and
Pfa = 10−4.

Fig. 3.3. Simulated probability of false alarm against clutter correlation coefficient
for N = 16 and Pfa = 10−4.

3.5 Conclusion

In this chapter, we have considered the problem of ML-CFAR regulation pro-
cessing a pulse-to-pulse partially Rayleigh correlated clutter. Assuming that
the clutter power is much higher than the noise power, we have derived a
closed form for the probability of false alarm. To analyze the detection perfor-
mance of the ML-CFAR detector, we have applied these results to show the
target detectability as a function of the correlation between Gaussian target
returns of all fluctuating models and multiple target situations [11].
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On-orbit Spatial Resolution Estimation of
CBERS-2 Imaging System Using Ideal Edge

Target
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J. Erthal1
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Astronautas, 1758, 12227-010 São José dos Campos, Brazil phone: 55 12 39 45 65
22, fax: 55 12 39 45 64 68 {camel,banon,leila,gaia}@dpi.inpe.br

Summary. The China-Brazil Earth Resources Satellite (CBERS-2) has been devel-
oped by China and Brazil and was launched on October 2003. This satellite carries
three sensors: WFI, CCD and IRMSS. Due to limitations of the CCD sensor com-
ponents, the images acquired by the imaging system undergo a blurring. Under the
hypothesis that the Point Spread Function (PSF) of the imaging system is Gaussian,
the blurring effect of an ideal step edge can be represented as an error function (erf).
As the PSF is assumed separable, its identification reduces to the estimation of two
standard deviations or equivalently to two EIFOVs (Effective Instantaneous Field of
View), one for the along-track direction and another for the across-track. This work
describes an approach for the on-orbit CBERS-2 CCD spatial resolution estimation
using a set of subimages of natural edges and allows an objective assessment of the
imaging system performance.

Key words: CCD camera, spatial resolution, estimation, modelling, target,
erf, edge spread function, point spread function, EIFOV.

4.1 Introduction

A cooperative remote-sensing program between Brazil and China initiated
in 1988, has resulted in the development and the building up a set of re-
mote sensing satellites called CBERS (China-Brazil Earth Resources Satel-
lite). These satellites allow monitoring their huge territories, mainly: environ-
mental change, ground survey, natural disaster, agriculture and deforestation.

The first stage of this program was accomplished by the launching of
CBERS-1 on October 1999, which operated until August 2003. The second
stage of the program consisted of the launching on October 2003 of CBERS-2,
technically similar to its predecessor, with only minor changes to ensure its
reliability.
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Imagery from orbiting sensors has provided much information about the
Earth’s surface and the effects of human activities upon it. For this informa-
tion be useful, it is critical to access the imagery system performance. One
performance measure is related to the blurring effect due to the instrumen-
tal optics (diffraction, aberrations, focusing error) and the movement of the
satellite during the imaging process.

Hence, the images may have a blurred appearance that is likely to compro-
mise their visual quality and analysis. In this sense, the performance evalua-
tion of imaging system in term of spatial resolution estimation is an important
issue.

In general, the blurring effect is related to the Point Spread Function (PSF)
in the spatial domain and to the Modulation Transfer Function (MTF) in the
frequency domain [6]. For translation invariant linear system, the PSF char-
acterizes the imaging system. Under the assumption that the PSF is Gaussian
and separable, its identification reduces to the estimation of two parameters
called EIFOV (Effective Instantaneous Field of View), one for the along-track
direction and another for the across-track which are equal to 2.66 times the
standard deviation [2, 16]. This estimation allows spatial resolution estima-
tion, and consequently an objective assessment of the imaging system perfor-
mance. The EIFOV enables a comparison between different sensors.

Among other approaches, the spatial resolution of an imaging system may
be obtained from the blurring effect of an ideal step edge. In natural scenes,
edges are not always ideal step edges. For that reason, only the “better” edges
are selected. When the imaging system is excited by an ideal step edge, the
transition from bright to dark defines the edge sharpness and it is used to
estimate the spatial resolution.

This transition is represented by the so-called Edge Spread Function (ESF)
[12]. Despite the fact that this function is 2D, it can be characterized through
a 1D function along the normal of the edge in the case of translation invariant
systems. Furthermore, when the system is linear and the PSF is Gaussian,
this function is an error function (erf) which is the convolution product of the
ideal step edge with a Gaussian function.

The two EIFOV characteristic parameters of the spatial resolution can be
theoretically obtained from two ESFs in different directions. In practice more
than two ESFs are convenient to get a more precise estimation.

The objective of this work is to use an approach for an on-orbit assessment
performance of the CCD camera of CBERS-2 satellite which doesn’t depend
on any target size measurement. The approach consists of estimating the
along-track and across-track EIFOVs using a set of subimages of natural edges
extracted from a scene image of Sorriso town in Mato Grosso state (Brazil).
Each selected subimage corresponds to a different edge direction.

A standard deviation associated with each subimage was estimated and the
spatial resolution estimation of the along-track and across-track was obtained
through an ellipse fitting.
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The rest of the Chapter is organized as follows: Section 4.2 gives a brief
overview of the CBERS-2 satellite. Section 4.3 summarizes four different PSF
estimation approaches. Section 4.4 introduce respectively the target scene of
natural edges between different crops or between crops and nude soils, and the
data preparation. Section 4.5 describes the algorithm used in this work for edge
detection and edge cross-section extraction, and it presents the edge model.
Section 4.6 introduces the details of the ellipse fitting technique. Finally, the
Sect. 4.7 discusses the results and gives the conclusion of this work.

4.2 CBERS-2 Overview

CBERS-2 satellite carries on-board a multisensor payload with different spa-
tial resolutions called: WFI (Wide Field Imager), IRMSS (Infrared MSS) and
CCD (Charge Coupled Device) camera. In addition, the satellite carries a
Space Environment Monitor for detecting high-energy radiation.

The high-resolution CCD Camera device which is the main study of this
work, provides images of 4 spectral bands from visible light to near infrared
(B1: 0.45–0.52 μm; B2: 0.52–0.59 μm; B3: 0.63–0.69 μm; B4: 0.77–0.89 μm)
and one panchromatic band (B5: 0.51–0.73 μm). It acquires the earth ground
scenes by pushbroom scanning, from a 778 km sun-synchronous orbit and
provides images of 113 km wide strips with sampling rate of 20 meters at
nadir for the multispectral bands.

4.3 PSF Estimation Approaches

Basically, there are four approaches to determine a PSF or a MTF of an
imaging system. They are based on experimental methods or in theoretical
modelling of the physical processes under study.

The first approach uses the image system specifications to model its spa-
tial response. Fonseca and Mascarenhas [8] and Markham [15] have used this
approach to determine the spatial response of the TM sensor (Landsat satel-
lite).

The second approach uses targets with well-defined shape and size as air-
port runway, bridges, artificial targets, etc. For these targets, Storey [17] has
provided a methodology for on-orbit spatial resolution estimation of Landsat-
7 ETM+ sensor by using a Causeway Bridge image (Louisiana – USA). Choi
and Helder [7] have used airport runway and a tarp placed on the ground for
on-orbit MTF measurement of IKONOS satellite sensor. Bensebaa et al. [4]
used an image of an artificial black squared target placed in the Gobi desert
(China). The CCD spatial response is modelled as 2D Gaussian function which
is characterized by two parameters: one in along-track direction and another
in across-track. The EIFOV values are then derived from these parameters.
Bensebaa et al. [3] also used natural targets such as the Rio-Niter Bridge
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over Guanabara Bay (Brazil) and Causeway Bridge to estimate the spatial
resolution in the along-track and across-track directions, respectively.

As opposed to the second approach, in the third approach the target size
doesn’t need to be known since the target consists of an ideal step edge. This
approach was already successfully experimented by Luxen and Förstner [14].

The fourth approach consists of adjusting a simulated low resolution image
to an image acquired by the sensor under study. According to Storey [17], this
method works satisfactorily if the two sets of imagery are acquired at or near
the same time or, at least, under similar conditions to avoid the problems
associated with temporal variations. This kind of experiment was used to
determine the spatial resolution of the CBERS-CCD cameras using a higher
spatial resolution image acquired by the SPOT-4 satellite and an image of the
same scene acquired by CBERS satellite [5].

The algorithm proposed in this work belongs to the third approach but
differently from the work of Luxen and Förstner [14], the point spread function
model used here, may be assumed separable since the selected images are raw
data whose rows correspond to the CCD chips and columns correspond to the
detectors movements both being in orthogonal directions.

4.4 Target Image

The initial task is the selection of natural edges between different crops or
between crops and nude soils. In this sense, the scene of Sorriso town located
270 miles north of Cuiabá, the state capital of Mato Grosso (Brazil) is per-
fect. Sorriso County now plants above 700,000 acres of soybeans annually. In
addition, this region is also a producer of corn and cotton. Figure 4.1 shows
original image of Sorriso region.

This work used band B2 of the scene of Sorriso with orbit 116 and point
114, acquired on July 15, 2006 by CCD camera on-board CBERS-2. The
original cloud free image was a good candidate for the extraction of several
subimages of different edge directions. Twelve of these subimages were selected
for this work.

4.5 Edge Processing

In this section, we describe the algorithm for edge cross-section extraction as
well as the edge model. The illustrations are done, using a subimage with edge
direction of 143◦ .

4.5.1 Edge detection and edge cross-section extraction

The first step of the algorithm is the edge detection. For this step, the Sobel
operator [10] was used with a thresholding operation that results in a binary
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Fig. 4.1. Original image of Sorriso region (band 2)

image. This operator was chosen because it’s less sensitive to isolated high
intensity point. It is a “small bar” detector, rather than a point detector.
Figure 4.2(a) shows the original subimage and Fig. 4.2(b) shows the result of
Sobel edge operation after thresholding.

(a) (b)

Fig. 4.2. Edge detection: (a) original subimage; (b) detected edge

Once the edge detection operation is performed, its gravity center Gc is
computed using the following expression:
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Gc =

∑
(u,v)(u, v).IE(u, v)∑

(u,v) IE(u, v)
(4.1)

where (u,v) represents the position of each pixel in the binary edge image IE
and IE(u, v) represents its radiometry.

A 7 × 7 subimage was extracted in such a way that its center coincides with
the previously computed gravity center. This operation allows the centering
of the detected edge in the subimage. Figure 4.3(a) shows the centralized
subimage and the Fig. 4.3(b) shows the centralized detected edge.

(a) (b)

Fig. 4.3. Edge centralization: (a) centralized subimage; (b) centralized detected
edge

The parameters a, b and c of the edge fitting straight line equation:

au + bv + c = 0 (4.2)

were estimated by solving the homogeneous linear equation system given by
expression:

Ax = 0 (4.3)

where x is the vector of 3 unknowns [a b c]t , 0 is the null vector [0 0 0]t and
A is the matrix M × 3 with M > 3 given by:

A =

⎡⎢⎣ u1 v1 1
...

...
...

uM vM 1

⎤⎥⎦ , (4.4)

where the (ui, vi)i=1,..,M are the coordinates of the edge pixels.
The best way to solve (4.3) is to perform singular value decomposition on

the matrix A [13].
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The next step consists of extracting the edge cross-section along the edge
normal. This edge cross-section is the function ER that maps the real numbers:

ρ(u, v) =
(au + bv + c)√

a2 + b2
(4.5)

to the radiometries IR, when (u, v) runs over the domain of the subimage
IR (7 × 7 set of points). Actually ρ(u, v) represents the distance of the pixels
position (u, v) to the edge straight line given by (4.2) [1].

Figure 4.4 depicts the edge cross-section extracted from a given subimage.
The domain unit is meter and the range unit is radiometry digital number.

Fig. 4.4. An edge cross-section

4.5.2 Edge Model

Let M1 and M2 represent, respectively the least and the greatest values of the
edge cross-section, then the edge model is given by:

EM (ρ) =
(

1− 1
2
∗ erfc

(
ρ− μ

σ
√

2

))
∗ (M2 −M1) + M1 (4.6)

where erfc represents the complementary error function given by:

erfc(x) =
2√
π

∫ ∞

x

e−t
2
dt (4.7)

In (4.6), the parameters μ and σ represent respectively the mean and the
standard deviation of the underlying Gaussian function.
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Let RMS(ER, EM ) be the root mean square of the difference between ER
and EM :

RMS(ER, EM ) =
(

1
#Domain(ER)

∑
(ER − EM )2

)1/2

(4.8)

The estimation procedure has two-steps. At the first step for a given de-
fault value σ , we look for μ which minimizes RMS(ER, EM ). At the second
step, we use the previous optimal value μ and look for σ which minimizes
RMS(ER, EM ). The optimal values have been obtained by nonlinear pro-
gramming [11].

Figure 4.5 depicts the result of the fitting of the edge model over the edge
cross-section for an edge direction of 143◦ .

Fig. 4.5. Fitting the edge model over the edge cross-section

4.6 Ellipse Fitting and EIFOV estimation

The last step is the ellipse fitting. More specifically, because of the separability
assumption of the PSF, the problem is the fitting of the ellipse given by (4.9):

x2

σ2
x

+
y2

σ2
y

= 1 (4.9)

over the set of points (xi, yi) i = 1, ..., 12 where
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xi = σi
|bi|√
a2
i + b2i

(4.10)

yi = σi
|ai|√
a2
i + b2i

(4.11)

and where σi is the optimal standard deviation for edge i with parameters ai
and bi. Each point (xi, yi) characterizes the blurring effect in the direction of
the normal to the edge i, its distance to the origin is σi.

The above expression are for an edge direction arctg(−ai/bi) comprised
between 0 and π/2. For the other quadrants some appropriate signal must be
added in these expressions.

The parameters σx and σy are estimated by solving the homogeneous linear
equation system given by the following expression:⎡⎢⎣ x2

1
y2

1
−1

...
...

...
x2

12
y2

12
−1

⎤⎥⎦ .

⎡⎣α
β
γ

⎤⎦ = 0 (4.12)

The estimated values of standard deviations σx and σy in along-track and
across-track directions are respectively,

σx =
√

γ

α
and σy =

√
γ

β
. (4.13)

Finally, the optimal EIFOV values for both directions are related to the
standard deviation σ by the expression:

EIFOV = 2.66.σ (4.14)

Results of the optimal values of the standard deviation and the EIFOVs
are presented in Table 4.1.

Table 4.1. Results of optimal EIFOVs

Direction Standard Deviation (m) EIFOV (m)
Along-track 19.20 51
Across-track 25.26 67

Figure 4.6(a) shows the subimages and its corresponding EIFOV while
Fig. 4.6(b) shows the best fitting of the ellipse.

4.7 Conclusion

In this Chapter, an approach for CBERS-2 CCD on-orbit spatial resolution
estimation has been introduced using subimages of natural edges extracted
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(a) (b)

Fig. 4.6. EIFOV estimation: (a) selected subimages; (b) ellipse fitting

from the original image of a scene of Sorriso town in Mato Grosso state in
Brazil.

The results show that the CBERS-2 CCD across-track resolution is worse
than the along-track one and confirm the results obtained in previous works.
This degradation could be explained by the presence of mirror vibration when
both sensors IRMSS and CCD work simultaneously.

Besides this hypothesis, the observed degradation could be the result of an
electronic coupling between adjacent detectors. In addition, we have noticed
a little degradation of the EIFOV in along-track direction in comparison with
the previous results [3, 4, 5], even though this method of using edges as targets
leads to conservative evaluations because of the difficulty of finding ideal edges.

This EIFOV estimation result is valuable in future work on CBERS-2
image restoration.
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Summary. This chapter deals with the cell averaging constant false alarm rate
(CA-CFAR) distributed RADAR detection of targets embedded in a non Gaussian
clutter. We develop a novel pre-processing algorithm to reduce spiky clutter effects,
notably a non linear compression procedure. This technique is similar to that used in
non uniform quantization where a different law is used. Two approaches to combine
data from the pre-processed CA-CFAR detectors are proposed The performance
characteristics of the proposed CA-CFAR distributed systems are presented for dif-
ferent values of the compression parameter. We demonstrate, via simulation results,
that the pre-processed procedure combined with distributed systems when the clut-
ter is modeled as alpha-stable distribution, are computationally efficient and can
significantly enhance detection performance.

Key words: Distributed radar detection, Non gaussian clutter, Non linear
Compression

5.1 Introduction

In recent years, multisensor data fusion has received significant attention for
military and non military applications [1]. The RADAR network is a kind of
multisensor data fusion system. An important point in RADAR detection is
to maintain a constant false alarm rate when the background noise fluctuates.
Hence, CFAR detectors have been designed to set the threshold adaptively
according to local information on the background noise. The CA approach
is such an adaptive procedure. The design of a distributed CFAR detection
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system is strongly affected by the clutter model assumed. A number of stud-
ies suggest that clutter modeling is more accurately achieved by heavy-tailed
distributions than Rayleigh and Weibull distributions, such as active sonar
returns, sea clutter measurements, and monostatic clutter from the US Air
Force Mountaintop Database [2]. Indeed, alpha-stable processes have to be
effective in modeling many real-life engineering problems [3,4] such as outliers
and impulsive signals [2]. We will use a non linear compression method for
spiky clutter reduction. This new algorithm consists on compressing the out-
put square law detector noisy signal with respect to a non linear law in order
to reduce the effect of impulsive noise level. We present two configurations
to combine data from multiple CA CFAR detectors based on a non linear
compression procedure for spiky clutter reduction. The organization of the
chapter is as follows: Section 5.2, presents our method of non gaussian clutter
reduction for single CA-CFAR detector. We derive the false alarm probabil-
ity PFA of CA-CFAR detector based on a non linear compression procedure
for alpha-stable measurements. In section 5.3, we present a distributed sys-
tem based on the proposed method to achieve even better performance. Two
approaches to combine data from the pre-processed CA-CFAR detectors are
discussed. Finally, the results and conclusions are provided in sections 5.4 and
5.5 respectively.

5.2 The Pre-Processed CA-CFAR Based On A Non
Linear Compression (PCA-CFAR) For Non Gaussian
Clutter Reduction

We suppose that the clutter is modeled as alpha-stable distributed data. We
propose to pass the noisy signal through a non linear device that compresses
the large amplitude (i.e., reduces the dynamic range of the noisy signal) before
further analysis as proposed in [5]. Fig 5.1, illustrates the pre-processed CA-
CFAR detector (PCA-CFAR) block diagram. X and X̃ are the square law
detector output and the compressed signal respectively. The output of the
non linear device is expressed as:

X̃ = g [X ] = |X | β .sign [X ] (5.1)

where 0 < β ≤1 is a real coefficient that controls the amount of compression
applied to the input signal of the non linear compressor. This technique is
similar to that used in non uniform quantization where a different non linear
law is used [6].

In the following we derive the expression of the pdf of the statistic at the
output of the non linear compressor. The statistic y = x̃ is the output of the
compressor, then

y = x̃ = g (x) = |x| β.sign (x) (5.2)
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where x is the input of the compressor and is Pearson distributed. The pdf,
pX(x) is given by

pXi(x) =

{
γ√
2π

1
x3/2 e

−γ2/2x, x ≥ 0
0, otherwise

(5.3)

where γ is the dispersion of the distribution.
py(y) is given by [7]

pY (y) =
fX(x)
|g′(x)| (5.4)

Fig. 5.1. Block diagram of the PCA-CFAR structure.

substituting x by (y1/β), (5.4) results in

pY (y) =
γ√
2πβ

1

y
2β+1
2β

e
− γ2

2y1/β (5.5)
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The probability of false alarm PPCAFA can be expressed as

PPCAFA = Pr
{
Ỹ0 ≥ TZ

}
=

∞∫
0

Pr
{
Ỹ0 ≥ Tz

}
pz(z)dz (5.6)

where Ỹ0 is the compressed noise random variable, interpreted as a target
echo during the thresholding decision. The statistic Z is the estimate of the
average clutter level after compression and equal to

Z=

(
1
N

) N∑
i=1

X̃i (5.7)

T is a scaling factor used to achieve a certain PFA.
We should note here that the scaling factor T is found by simulation based

on Monte Carlo counting procedure for a fixed PPCAFA

(
PPCAFA = 10−4

)
with

ten thousands iterations.
PPCAFA is controlled by the scaling factor T and it does not depend on the

dispersion parameter γ of the Pearson-distributed parent population. Hence,
the proposed PCA is also a CFAR method for compressed Pearson back-
ground. For β=1 (i.e., no compression), PPCAFA is equal to PFA of the conven-
tional CA-CFAR detector.

The corresponding probability of detection (PD) for the case of a Rayleigh
fluctuating target with parameter σ2

s in a heavy-tailed background noise can
be expressed as

PPCAD = Pr
{
Ỹ1 ≥ TZ

}
=

∞∫
0

Pr
{
Ỹ1 ≥ Tz

}
pZ(z)dz (5.8)

where
Ỹ1 = |Y1|β sign(Y1) (5.9)

An exact analytical evaluation of the expression (8) is not possible. In fact,
to specify Y1 under H1would require specifying the in-phase and quadrature
components of both the clutter and the useful signal, whereas only their am-
plitudes pdfs are given. Therefore, we have to resort to computer simulation
to evaluate PPCAD . Hence, the test-cell measurement is considered as a com-
pressed scalar product of the two vectors: the clutter and the useful signal
respectively. So that

Y1 = s + c +
√
s.c · cos (θ) (5.10)

where θ is the angle between the vectors s and c and is uniformly distributed
in [0,2π]. s and c are the input signal and clutter components, respectively.
Note that PD is a function of the clutter dispersion γ, the power parameter
of the Rayleigh fluctuation target σs and the compressor parameter β.

In the following we propose two configurations to combine data from the
pre-processed CA-CFAR detectors.
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5.3 Distributed PCA-CFAR System For Non-Gaussian
Clutter Reduction

Two approaches to combine data from the pre-processed CA-CFAR detectors
are discussed in this section. In the fusion configuration shown in Fig. 5.2,
we consider a distributed detection system constituted of n independent CA-
CFAR sensors based on the non linear compression method. The clutter is
modeled as alpha-stable distributed data. Each detector i, i=1,2,...n, based
on a compressed observation vector X̃i makes a decision cui. Each decision
cui may take the value 0 or 1 depending on whether the detector i decides H0

or H1. The global decision cu0 is made based on the received decision vector
containing the individual decisions i.e., CA=(cu1,cu2,...........cun) according
to ”OR” logic. The Neyman-Pearson (N-P) formulation of this distributed
detection problem is considered.

In the fusion configuration, shown in Fig. 5.3, we compute the mean vector
of the compressed observation vectors of all detectors. The resulting computed
vector is then introduced into a CA-CFAR block. The global decision cu0 is
made according to CA-CFAR procedure and N-P formulation. The hope being
is to enhance detection performances of the fusion configuration shown in Fig.
5.2. We assume that the detectors of the distributed systems have the same
characteristics, i.e., equal PPCAFA and equal number of reference cells Ni. It
is worth noting that almost no gain is achieved by adopting larger reference
windows. We note also, that the combination and increasing the number of
pre-processed sensors are more effective than enlarging the reference window,
as far as the probability of detection is concerned. Hence, distributed pre-
processed detectors combined with two fusion configurations and operating
in alpha-stable background, behave considerably better than a single pre-
processed sensor.

5.4 Results and Discussions

This section is devoted to the performance assessment of the proposed CA-
CFAR detector. We consider the case of a Rayleigh fluctuating target em-
bedded in Pearson distributed environment. We obtain through simulation
results, based on Monte Carlo counting procedure, PD versus the generalized
signal-to-noise ratio (GSNR) for the case of Pearson clutter for a fixed PFA.
The GSNR is defined in [8] as:

GSNR = 20 log
σs
γ

(5.11)

where σs is the parameter of the Rayleigh fluctuating target.
We should note here that although the moment EX 2 of a second-order

process has been widely accepted as standard measure of signal strength and
associated with the physical concept of power and energy, it cannot be used
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with alpha-stable distributions because it is infinite. Hence, the GSNR expres-
sion in (5.14) should not be interpreted as a signal to noise power ratio. The
results obtained are shown in Figs.5.4-6. Fig 5.4 illustrates the effect of the
compression parameter β on PD. The latter controls the amount of compres-
sion. As we can see the pre-processed PCA-CFAR achieves better performance
than the CA-CFAR without pre-processing especially for low GSNR and for
smaller values of β (β=0.1). For β=1 (no compression), the proposed PCA-
CFAR gives the same results as the CA-CFAR. The scaling factor used to
achieve a desired PFA (PPCAFA =10−4) for the pre-processed detector has been
computed by simulation techniques for different values of β. In Figs. 5.5 and
5.6, we show the detection probability of both the two fusion configurations
based on the non linear compression method for spiky clutter reduction. As
we can see, the combination of the distributed system and the compression
reduction procedure with two configurations is more effective than the single
PCA-CFAR detector.

Fig. 5.2. First configuration of distributed PCA-CFAR detectors.

Fig. 5.3. Second configuration of distributed PCA-CFAR detectors.
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5.5 Concluding Remarks

This chapter developed multisensor techniques based on a non linear compres-
sion procedure for non Gaussian clutter reduction . The performance of the
proposed CA-CFAR detector operating in alpha-stable environment has been
analysed. A non linear compression filter is introduced to reduce clutter spiki-
ness. The key of this pre-processed method is the appropriate choice of β which
controls the amount of compression. The comparisons of the proposed CFAR
procedure with the conventional CA-CFAR detection have clearly demon-
strated the superiority of the

Fig. 5.4. PD of single PCA-CFAR processor in homogeneous Pearson background
as a function of GSNR=20log(σs/γ) and different values of β. NPCA=32, PPCA

F A =
10−4.

pre-processed detector over the conventional CA processing especially for
β=0.1. Therefore, the proposed pre-processed method is computationally ef-
ficient and can significantly enhance detection and reduce the noise effects. It
has been shown, from simulation results, that the compression clutter reduc-
tion method does not have a significant effect on the detection probability for
large values of β. The results obtained showed that the combination of the
compression reduction procedure and multisensor parallel topology when the
clutter is modeled as alpha-stable distributed data, has considerably increased
the detection probability especially for small values of GSNR and for smaller
values of β (β=0.1 and β=0.3).
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Fig. 5.5. PD of distributed PCA-CFAR detectors adopting The 1st fusion configu-
ration, as a function of GSNR=20log(σs/γ) and different.

Fig. 5.6. PD of distributed PCA-CFAR detectors adopting The 2nd fusion config-
uration, as a function of GSNR=20log(σs/γ) and different values of β. NPCA =32,
PPCA

F A = 10−4.
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6.1 Introduction

Current satellite sensors provide multispectral images that are of great poten-
tial to discriminate between different types of landscape. Multivariate datasets
are however difficult to handle: the information is often redundant, as spec-
tral bands are highly correlated with one another. Satellite images are also
typically large, and the computational cost of elaborate data processing tasks
may be prohibitive. One possible solution is to use Dimensionality Reduction
(DR) techniques. Their goal is to find a subspace of lower dimensionality than
the original data space, on which to project the dataset, while retaining its
features. They are useful to reduce the computation time of subsequent data
analysis . They could also, by studying the shape of the manifold, produce
insight into the process that created the data. Last but not least, they also
help visualizing complex multidimensional data.

Numerous studies have aimed at comparing DR algorithms, usually us-
ing synthetic data. In [1], we took the operational viewpoint, by comparing 5
DR algorithms with real-life data. The methods compared in [1] were Prin-
cipal Components Analysis, Curvilinear Components Analysis, Curvilinear
Distance Analysis, ISOMAP (Isometric Feature Mapping) and Locally Linear
Embedding. We applied these dimension reduction methods on multispectral
Landsat 7 images and compared the results of a K-means algorithm applied
on the reduced images. We concluded that ISOMAP (a nonlinear, local and
geodesic method) was the most performing.

We extend here this study in comparing ISOMAP to 4 other DR methods
that are Laplacien Eigenmaps, Second Order Blind Identification, Projection
Pursuit and Sammon’s Mapping. Our results show that Laplacian Eigenmaps,
a nonlinear and local method like ISOMAP, but Euclidean, is the most inter-
esting of all methods. The chapter is organized as follows: In Section 2, we
briefly present the images we have processed, the reduction methods we have
compared and the comparison procedure. Section 3 provides experimental re-
sults and Section 4 concludes the chapter.
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6.2 Materials and Methods

Let X = (x1, . . . , xn)T be the n×m data matrix. The number n represents
the number of pixels in an image, and m the number of spectral bands. We
have in our case n=4096 and m=7.

6.2.1 Satellite images

The images used in this study have been provided by the French Institute
for the Environment (IFEN). They are multispectral images acquired by the
LANDSAT 7 satellite in 2001. Each image consists of seven spectral bands
(m=7), with a spatial resolution of 30 meters per pixel. The original images
were cropped to 198 64× 64 (n=4096) subimages, thus adapting the scale to
our application, the study of avian territories. The rather small size of the
subimages is also useful to limit the computational workload.

6.2.2 Estimating Intrinsic Dimensionality

One of our working hypotheses is that, though data points are points in Rm,
there exists a p-dimensional manifold M that can satisfyingly approximate
the space spanned by the data points. The meaning of ”satisfyingly” depends
on the dimensionality reduction technique that is used. The so-called intrin-
sic dimension (ID) of X in Rm is the lowest possible value of p for which
the approximation of X by M is reasonable. In order to estimate the ID of
our data sets, we used a geometric approach that estimates the equivalent
notion of fractal dimension [2]. Using this method, we estimated the intrinsic
dimensionality of our dataset as being p=3.

6.2.3 Dimensionality Reduction

Dimensionality reduction techniques seek to represent X as a p-dimensional
manifold (p < m) embedded in a m-dimensional space. DR methods can be
classified according to three characteristics:

• Linear/nonlinear . This describes the type of transformation applied to
the data matrix, mapping it from Rm to Rp.

• Local/global . This reflects the kind of properties the transformation does
preserve. In most nonlinear methods, there is a compromise to be made
between the preservation of local topological relationships between data
points, or of the global structure of X .

• Euclidean/geodesic. This defines the distance function used to estimate
whether two data points are close to each other in Rm, and should conse-
quently remain close in Rp, after the DR transformation.
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ISOMAP. ISOMAP (Isometric Feature Mapping)[3] estimates the geodesic
distance along the manifold using the shortest path in the nearest neighbors
graph. It then looks for a low-dimensional representation that approximates
those geodesic distances in the least square sense (which amounts to MDS).
It consists of three steps:

1. Build Dm(X), the all-pairs distance matrix.
2. Build a graph from X , using for each data point a restricted number of

neighbors. For a given point xi in Rm, a neighbor is either one of the K
nearest data points from xi, or one for which dmij < ε. Build the all-pairs
geodesic distance matrix Δm(X), using Dijkstras all-pairs shortest path
algorithm.

3. Use classical MDS to find the transformation from Rm to Rp that mini-
mizes

Jisomap(X, p) =
n∑

i,j=1

(δmij − δpij)
2 (6.1)

ISOMAP is nonlinear, global and geodesic.

SOBI. Second-Order Blind Identification SOBI relies only on stationary
second-order statistics that are based on a joint diagonalization of a set of
covariance matrices. Each Xi(t) is assumed to be an instantaneous linear
mixture of n unknown components (sources) si(t), via the unknown mixing
matrix A.

X(t) = As(t) (6.2)

This algorithm can be described by the following steps; more details on
SOBI algorithm can be found in [4].

1. Estimate the sample covariance matrix Rx(0) and compute the whitening
matrix Wwith

Rx(0) = E(X(t)).X∗(t)) (6.3)

2. Estimate the covariance matrices Rz(τ) of the whitened process z(t) for
fixed lag times τ .

3. Jointly diagonalize the set {Rz(τj)/j = 1, . . . , k}, by minimizing the cri-
terion

J(M,V) =
∑

k=1,...,n

(
∑

i�=j=1,...,n

∣∣V tMi,jV
∣∣2) (6.4)

where M is a set of matrices in the form

Mk = V DkV (6.5)

where V is a unitary matrix, and Dk is a diagonal matrix.
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4. Determinate an estimation Â of the mixing matrix A such as

Â = W−1 (6.6)

5. Determinate the source matrix and then extracting the p components.

SOBI is a linear, global, Euclidean method

Projection Pursuit. This projection method [5] is based on the optimization
of the gradient descent. Our algorithm uses the Fast-ICA procedure that al-
lows estimating the new components one by one by deflation. The symmetric
decorrelation of the vectors at each iteration was replaced by a Gram-Schmidt
orthogonalization procedure. When p components w1, . . . , wp have been es-
timated, the fix point algorithm determines wp+1. After each iteration, the
projections wTp+1wjwj(j = 1, . . . , p) of the p precedent estimated vectors are
subtracted from wp+1. Then wp+1 is renormalized:

wp+1 = wp+1 −
p∑
j=1

wTp+1wjwj (6.7)

wp+1 =
wp+1√

wTp+1wp+1

(6.8)

The algorithm stops when p components have been estimated.
Projection Pursuit is linear, global and Euclidean.

Sammon’s Mapping. Sammon’s mapping is a projection method that tries
to preserve the topology of the set of data (neighborhood) in preserving dis-
tances between points [6]. To evaluate the preservation of the neighborhood
topology, we use the following stress function:

Esammon =
1∑N

i,j=1 d
n
i,j

⎛⎝ N∑
i,j=1

(dni,j − dpi,j)
2

dni,j

⎞⎠ (6.9)

where dni,j and dpi,j are the distances between points ith and jth points, in Rm

and Rp

This function, minimized by a gradient descent, allows adapting the distances
in the projection space at best as distances in the initial space.

Sammons Mapping is a nonlinear, global, and Euclidean method.

Laplacian Eigenmaps. This method projects the set of data in a reduced
subspace in preserving neighborhood relations between the points [7].
The three steps of the algorithm are the following:
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1. Build the non-oriented symmetric neighborhood graph (each point is
linked to its k nearest neighbors).

2. Associate a positive weight Wij to each link of the graph. These weights

can be constant (Wij = 1
k ), or exponentially decreasing (Wij = e

−‖xi−xj‖2

σ2 ).
3. Obtain the final coordinates yi of the points in Rp by minimizing the cost

function

EL =
∑
ij

Wij ‖yi − yj‖2√
DiiDjj

(6.10)

where D is the diagonal matrix Dii =
∑

jWij .
The minimum of the cost function is found with the eigenvectors of the Lapla-
cian matrix:

L = I −D− 1
2 −WD− 1

2 (6.11)

Laplacian Eigenmaps is a nonlinear, local, Euclidean method.

6.2.4 K-means Clustering

The K-means algorithm [8] is among the most popular and cost-effective clus-
tering techniques. It finds the clustering result that minimizes the sum of
squared Euclidean distances between data points and cluster centroids. To
apply the K-means algorithm on images, we need to know the number of clus-
ters of the image. In order to automate the process of our images, we added to
the K-means algorithm a pre-processing that finds this number automatically.
A description of this pre-processing can be found in [1].

6.2.5 Choice of Images and Manual Segmentation

All images were manually segmented by an expert in order to be compared
with automatically segmented images. This manual segmentation is used as
our ”‘golden standard”’ to compare the clustering accuracy after DR.

6.2.6 Objective Comparison

The clustering results are compared to the expert segmentation using two
objective measures: the correct classification rate, and the kappa statistic,
computed from the confusion matrix [9].
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6.3 Results

We have applied all DR methods on 20 Landsat images. Each reduction
method provided a new 3 bands image.

Figure 1 shows one of the studied images. We can see here 2 views of it :
a pseudo-color image created from the infrared bands of the original Landsat
image and the classified image given by the expert.

Figure 2 shows the 3 bands images obtained with each reduction dimension
method from the original image. There is no ordering of the different bands
after dimensionality reduction. Note that Projection Pursuit provides a new
image in which information is quiet deteriorated.

Figure 3 shows the classified images obtained from each reduced image.
As noted in Figure 2, Projection Pursuit provides a classified image of very
bad quality. Except for the Projection Pursuit, it’s not possible to conclude
from these images what method is better than the others.

Fig. 6.1. Pseudo-color image created from the IR bands, and manual segmentation
result.

Clustering results are summarized in Table 1. These values are averages of
the values computed from the 20 tested images. For each image, we compared
the automatic classified images with the expert classified image and computed
the classification rate and the kappa value. We added in the table the run time
of each DR program computed on a conventional desktop computer (P4 3GHz,
1GB RAM).

Observing these values, we can say that Sammon’s Mapping (nonlinear,
global, and Euclidean method) needs too much run-time for our application.
SOBI and Projection Pursuit (linear, global, Euclidean methods) are very fast
but the classification rates and kappa values of the images obtained with these
methods are too low and don’t allow us to recognize landscape organization.
ISOMAP (nonlinear, global and geodesic method) and Laplacian Eigenmaps
(nonlinear, local, Euclidean method) need acceptable run-times and provide
images with sufficient information to obtain a correct classification. Between
these two methods, Laplacain Eignemaps is the one which values are the most
interesting.
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Fig. 6.2. Results of DR methods applied to a Landsat image.

Fig. 6.3. Clustering results. The displayed colors correspond to the mean color for
each cluster, computed from the infrared pseudo-color image from Fig. 2.

Table 6.1. Summary of clustering results for each DR method, showing run times,
classification rates and kappa index for the confusion matrix.

Methods Run Times (s) Classification Rates(%) Kappa

ISOMAP 81,05 34,24 0,77
SOBI 2,23 33,58 0,71
PP 2,40 23,42 0,42
Sammons mapping 2968,14 33,91 0,68
Laplacian Eigenmaps 28,61 38,87 0,78
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6.4 Discussion

The comparison of DR algorithms has been studied mainly on synthetic data,
by evaluating their ability to ”unfold” a dataset. We took a more pragmatic
approach, by measuring how DR can improve clustering results. Our results
show that linear methods run faster than non-linear but they provide images
with lower quality. Laplacian Eigenmaps provides the best rate ”quality of
image / run time”. Projection Pursuit and Sammon’s mapping are the less
interesting methods because of the very poor quality of the provided images
or the very high run-time. We are currently working on this study, in order to
compare the data extracted from the classified reduced images in a program
of landscape recognition.

Acknowledgments. The authors would like to thank Xavier Tizon, Jonathan
Delcourt and Wail El Mjiyad for their helpful participation in this work.
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Summary. Wavelet is well-suited for smooth images, but unable to economically
represent edges. Wedgelet offers one powerful potential approach for describing edges
in an image. it provides nearly-optimal representations of objects in the Horizon
model, as measured by the minimax description length. In this paper, we proposed
a multi-layered compression method based on Cartoon+Texture model which com-
bined wedgelet and wavelet transforms, and where the coefficients of wedgelet and
wavelet were coded with Huffman coding, run-length coding and SPIHT. Experi-
ment results showed that the proposed method is effective and feasible in SAR image
compression.

Key words: Wedgelet, Wavelet, SAR image compression, Cartoon + Texture
model

7.1 Introduction

Synthetic aperture radar (SAR) imagesformed from spatially overlapped radar
phase historiesare becoming increasingly important and abundant in a vari-
ety of remote-sensing and tactical application. With the increased abundance
of these images, the need to compress SAR images without significant loss
of perceptual image quality has become more urgent. There have been many
algorithms for compressing SAR images, such as DCT transform [1], Gobar
transform [2], and wavelet transform. Wavelet is more popular than any oth-
ers, which has been used successfully by numerous authors for lossy image
compression ([3], [4], and [5]).

Wavelet transform provides a sparse representation for smooth images,
and is able to efficiently approximate smooth images. Unfortunately, this spar-
sity does not extend to piecewise smooth images, where edge disconti-nuities
separating smooth regions persist along smooth contours. This lack of spar-
sity hampers the efficiency of wavelet based approximation and compression.
In addition, wavelet decomposes low-frequency signal of image step by step,
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preserves lots of low-frequency information and discards high-frequency infor-
mation, which leads to the loss of more high-frequency information. Wavelet
coefficients in edges also have complex correlation. Ringing artifacts appear
around edges when we reconstruct the SAR image.

Wedgelet developed by Donoho [6] offers one convenient approach for de-
scribing edges in an image. Each dyadic blocks of wedgelets, which contains
a single straight edge with arbitrary orientation, can be chained together to
approximate an edge contour with desired accuracy. For certain classes of
contours, wedgelet had been shown to offer nearly-optimal nonlinear approx-
imations. Unfortunately, due to errors introduced by wedgelet in the stage of
approximating real edges, the application of wedgelet in SAR images com-
pression is not straightforward.

We propose a novel method for SAR image compression in this paper. It
combined wedgelet with wavelet transforms in SAR images compression [7],
which takes advantage of the merits of wedgelet and wavelet. First, we could
vertically collapse the edges in the image using wedgelet, and then it would be
left with a texture image that could be efficiently compressed with wavelet.
Moreover, since image edges tend to be smooth, they are low-dimensional
structures that are easy to describe and compress explicitly (much like a
smooth 1-d function can be compressed efficiently). So we can explain it by
cartoon + texture ([7] [8]) model,

Image = {cartoon}+ {texture}

f(x, y) = c(x, y) + t(x, y)

and get a two-layer compressing scheme, which first compresses the cartoon
with wedgelet and then the texture residual regions by wavelet combined with
SPIHT.

In Section 2, we introduce the mechanism of wedgelet from edgelet and
explain the relationship of edgelets and wedgelet. More details of the method
and encoding algorithms which are suitable to encode cartoon and texture
regions are offered in Section 3. Experimental results are presented in section
4. Finally, we conclude in section 5 with a discussion.

7.2 The Mechanism of Wedgelet

Wedgelet was developed by Donoho [6] in 1997. It is a piecewise constant
function on a dyadic square with a linear discontinuity, which can effectively
represent edges of an image. From [6], it is clearly that wedgelet is composite of
edgelets because of its decomposition correlated with edgelet. So we introduce
edgelet firstly.
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Edgelet and Edgelet Transform

Edgelet [6] is a finite dyadically-organizaed collection of line segments in the
unit square, occupying a range of dyadic locations and scales, and occurring
at a range of orientations. We would specifically describe the mechanism of
edgelet.

Edgelet is constructed in a dyadic square. We define a dyadic square S
[6][9] is the collection of points

{(x1, x2) : [k1/2j, (k1 + 1)/2j]× [k2/2j, (k2 + 1)/2j]}
where 0≤k1, k2≤2j for an integer j≥0 .it can be written for clarity. Before
introducing edgelet, we first have a concept of edgel.

We take the collection of all dyadic squares at scales 0≤j≤J . On each
dyadic square, put equally-spaced vertices on the boundary, starting from
corners, where equally-spaced is equal to δ, δ = 2−J−K for K¿0. Label all the
vertices in the clockwise boundary. Suppose we take vertices v1,v2∈[0, 1]2 and
consider the line segment e = v1v2. We call such a segment to be an edgel
(for edge element). With each dyadic square , edgelet is that the collection of
all edgels connecting vertices on the boundary of . See Fig.1 for the inherent
mechanism of edgelet [6].

Edgelets are not functions and do not make a basis; instead ,they can be
viewed as geometric objects - line segments in the square. We can associate
these line segments with linear functionals: for a line segment e and a smooth
function f (x1,x2), let e[f ] =

∫
ef .Then the edgelet transform can be defined

as
f(x) =

∑
i1i2

f(i1, i2)φi1i2(x) (7.1)

Tf [e] =
∫
e

f =
∫

f(x(l))dl (7.2)

7.2.1 The Mechanism of Wedgelet

Edgelet can not make up a basis and has little approximation of image data,
however, it offers a convenient description for wedgelet.

S is a dyadic square, if an edgelet e∈Eδ(S ), where Eδ(S ) is the collection
of all edgelets, dose not lie entirely on a common edge of S, we say it is
nondegenerate [6]. A nondegenerate edgelet traverses the interior of S, and
splits S into two pieces, exactly one of which contains the segment of the
boundary of S starting at v0,S and ending at v1,S . Label the indicator of that
piece ωδ,S and call this the wedgelet defined by e. Let Wδ(S )={1S}

⋃{ωe,S :
e∈Eδ(S ) nondegenerate}.

This collection of functions expresses all ways of splitting S into two pieces
by edgelet splitting, including the special case of not splitting at all. Fig.2
gives us a more visualization to understand wedgelet and the relation between
edgelet and wedgelet ([9], [10]).
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(a)� (b)� (c)� (d)�

(e)� (f)� (g)� (h)�

Fig. 7.1. Implement mechanism of edgelet, from (a) to (d) is marked out all vertices
with spacing , connecting all pairs of vertices in the same square using line segments
from (e) to (h)

 �

Fig. 7.2. The relation between edgelet and wedgelet

7.3 SAR Image Compression via Wedgelet Based on
Cartoon + Texture Model

SAR images differ from optical images, so we can’t use the usual compression
method to compress SAR im-ages. A SAR image includes lots of edges and
texture regions, and there is a great deal of speckle noise and singularity in the
texture regions. Standard wavelet algorithm can successfully compress texture
regions of SAR images, but can’t deal with the edge regions of SAR images.
It is lucky that we find another tool wedgelet to compress the edges. Based
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on Cartoon + Texture model, we combined the two tools together for SAR
image compression.

First, wedgelet was adopted to describe Cartoon regions of a SAR image. It
is an efficient quantization method to make the coefficients integers. We used
Huffman coding and run length coding to code these quanti-fied coefficients.
Second, the texture regions of the SAR image ,which were got from original
image subtracted by Cartoon regions, were compressed by combining wavelet
and SPIHT algorithm.

7.3.1 Cartoon Regions Compression by Wedgelet

Wedgelet transform [9] and wedgelet decomposition can be written as follow-
ing, Wedgelet transform:

Wf (ω) ≡ 〈f, ω〉, ∀ω ∈ W (7.3)

Wedgelet Decomposition:
f =

∑
ω∈Wn,δ

aωω (7.4)

where using edgelet transform(reference to equation (1),(2))to compute wedgelet
transform. Wedgelet transform is the process of wedgelet approximation which
is a recursive dyadic adaptive partition ([6] [11]). It must meet the best con-
dition of recursive dyadic partition, which is a complexity-penalized wedgelet
partition.

f =
∑

ω∈Wn,δ

aωω (7.5)

Where is optimal ED-RDP

minp∈EDRDPn,δ
‖y −AV E{y|P}‖2 + λ#P (7.6)

ED-RDP means an edgelet-decorated recursive dyadic partition, let AVE{y|P}
be satisfy value of optimal recursive dyadic partition, λ =

√
4× log(n) σ, we

take σ to be the standard deviation of a SAR image.
Through wedgelet transform and decomposition for a SAR image, we got

coefficients of cartoon regions. We used a simple and useful quantization
method to make the coefficients integers after analyzing the coefficients and
doing a number of experiments, these quantified coefficients were encoded with
Huffman coding and run- length coding. We reconstructed cartoon regions of
the SAR image after decoding, which is marked with ĉ(x, y).

7.3.2 Texture Regions Compression with Wavelet

After using wedgelet transform to approximate the SAR image, it was neces-
sary to code the residual texture image t = f - c. The texture regions of SAR
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images carry useful information including thinner texture and singularity, an
obvious alternative is simply to code the entire residual regions using wavelet.
In this paper, we choose db9-7 [12] wavelet basis which is suitable for SAR
images compression, adopted SPIHT [3] [4] to en-code wavelet coefficients.
We obtained after decoding. We obtained t̂(x,y) after decoding.

Combined the two sections, we acquired the compression result of entire a
SAR image, that was f̂(x, y) = ĉ(x, y) + t̂(x, y).

7.4 Experiments and Results Analysis

We choose two SAR images as test images which have abundant information
in edges. The first image is a two-look X-Band amplitude (10 GHz) SAR
called farm field in Bedfordshire, 3m resolution. The second image is a Ku-
Band (15 GHz) SAR carried by the Sandia Twin Otter in California, named
China Lake Airport, 3m resolu-tion. We contrasted our method with wavelet
combined with SPIHT, where wavelet basis was db9-7. PSNR (peak-to-peak
signal-to-noise ratio) measured the quality of SAR image compression

PSNR = 10lg{ 255× 255
1

MN

∑M
m=1

∑N
n=1[f(m,n)− f̂(m,n)]2

} (7.7)

where f (m,n) is the original image, f̂(m,n) is the reconstructed image.

Table 7.1. The compression performance of our method, gain in db reflects our
method improvement over Wavelet. SAR image sizes: farm field (256×256), china
lake airport (256×256)

SAR image Rate Wavelet combined Our method Gain
(bpp) with SPIHT, PSNR(dB) (dB)

PSNR(dB)

0.25 20.5008 21.5332 1.0342
Farm Field 0.50 21.4420 22.4045 0.9625

0.75 22.7138 23.5800 0.8662
1.00 23.5753 24.4351 0.8598

China 0.25 23.4614 23.6859 0.2245
Lake 0.50 24.1424 24.5956 0.4532

Airport 0.75 25.1076 25.1893 0.0817
1.00 25.6872 25.8414 0.1542

Table 1 shows compression results of wavelet and our method at a variety
of bitrates for the two SAR images. In most cases, our method offers a higher
PSNR than wavelet, with gain up to 1.0342dB.
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The results of wavelet combined with SPIHT compression is shown in
Fig.3 (b) and Fig.4 (b). It is obvious to find that strong ringing artifacts
are introduced near edges, because the dependencies among wavelet coeffi-
cients are not properly exploited, quantization crashes the coherence. From
Fig.3(c) and Fig.4 (c), the fact can be seen that the proposed method has
more effective compression results with much less ringing around the dominant
edges and better perceptual quality. Fig.5 shows three zooms on Fig.4 and one
can see that our method performs very well in preserving more detail linear
information of SAR images than wavelet.

 �  �  �

(a)� (b)� (c)�

Fig. 7.3. Farm Field (a) Original image (25656). (b) The compression result of (a)
using Wavelet with SPIHT, Rate=0.5bpp, PSNR=21.4420dB. (c) The Compression
result of (a) Using our method, Rate=0.5bpp, PSNR =22.4045dB

 �  �  �

(a)� (b)� (c)�

Fig. 7.4. Chinese Lake Airport (a) Original image( 25656). (b)The compression
result of (a) using Wavelet with SPIHT, Rate=0.5bpp, PSNR=24.1424dB. (c) The
Compression result of (a) using our method, Rate=0.5bpp, PSNR =24.5956dB

7.5 Concluding Remarks

In this paper, we presented a novel method combined wedgelet with wavelet
based on Cartoon + Texture model. Experiments showed that the proposed
method is suitable for SAR images compression. Compared to wavelet, our
method is more powerful for improving PSNR, decreasing ringing artifacts, as
well as preferably preserving the thin regions of original SAR images. However,
wedgelet uses adaptive quadtree partitioning, and unavoid-ably needs long
computing time, which is a problem we will deal with in future.
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 �  �  �

(a)� (b)� (c)�

Fig. 7.5. Zooms on details of Fig.4. (a) Original: a zoom on local region of Fig.4
(a). (b) Wavelet combined with SPIHT: a zoom on local region of Fig.4 (b). (c) Our
method: a zoom on local region of Fig.4 (c)
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Summary. Many researchers have demonstrated that textural data increase the
precision of image classification when they are combined with grey level informa-
tion. However, textural parameters of order two take too long computation time.
The problem is more complex when one must compute higher order textural param-
eters, which however can considerably improve the precision of a classification. In
this work, we propose a new formulation for the calculation of statistical textural
parameters. The principle consists in reducing the calculation of a n-summation of
type

L−1∑
i0=0

L−1∑
i1=0

L−1∑
i2=0

· · ·
L−1∑

in−1=0

ψ[i0, i1, · · · , i(n−1), Pi0 , i1, · · · , in−1]

generally used in the evaluation of textural parameters, to a double summation of
type

∑Wx
p=0

∑wy

q=0 χ(p, q) where L is the dynamic of grey levels (number of quan-
tification levels) in the image, (Pi0,i1,··· ,i(n−1)) is the occurrence frequency matrix
(co-occurrence matrix in the case of order two parameters) and Wx (respectively
Wy) is the width (respectively the height) of the image window. This method pro-
duces the same results as the classical method, but it’s about Ln−1 times faster than
the classical method and a gain of Ln of memory space is obtained, where n is the
order of the textural parameter.

Key words: textural parameter, frequency matrix, SAR image, image classification

8.1 Introduction

A great number of studies have been carried out in order to highlight the
perception of texture by the human eye. One can quote for example the
psycho-visual experiments of B. Julesz [7] and the works of A. Gagalowicz
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[4]. The texture analysis has been the object of many researches. Many meth-
ods has then been generated and developed in [2] and [5]. These methods aim
to characterize, to describe, and to discriminate textures. The Grey Level Co-
occurrence Matrix (GLCM) became the most used to classify satellite radar
images texture [6],[13]. Several research axes have been developed in the field
of GLCM. Some of them define a method to choose displacement vectors
[11],[3], and others aim to simplify these matrices [15],[8].
Since the size of SAR images is rather significant, one of the priorities in the
analysis of these images consists in the improvement of the computing time
of texture parameters. Various authors leaned on this problem. M. Unser [14]
proposed to replace the co-occurrence matrix by the sum and the difference of
histograms which define the principal axes of the probabilities of second order
stationary processes. D. Marceau et al. [10] proposed a textural and spectral
approach for the classification of various topics and adopted the reduction of
the level of quantification (16, 32 instead of 256), without deteriorating sig-
nificantly the precision of the classification. A. Kourgly and A. Belhadj-Aissa
[8] presented a new algorithm to calculate textural parameters using various
histograms. This algorithm requires the allowance of a vector instead of a
matrix, and the calculation of textural parameters is done according to new
formulas by using a simple summation instead of a double summation, which
reduces considerably the computing time. A. Akono et al. [1] proposed a new
approach for the evaluation of the textural parameters of order 3, based on
A. Kourgly and A. Belhadj-Aissa [8] works.
In this paper, we propose a new approach for the evaluation of textural param-
eters of any order n � 1. This method consists in a reformulation of textural
parameters, which avoids the hard calculation of the occurrence frequency
matrix (GLCM in the case of order 2).
The reminder of this paper is organized as follows. Section 2 presents the
classical textural parameter formulation. In Section 3, we describe the pro-
posed textural parameter reformulation. Section 4 is devoted to an example
of the calculation of a very used texture parameter using both classical and
new methods. In Section 5, a comparative study is done on the algorithmic
complexity required by each approache for the evaluation of a textural param-
eter. Some experimental results are included in Section 6 and the conclusion
follows.

8.2 Classical formulation of statistical textural
parameters

Basically, statistical textural parameters are function of the occurrence fre-
quency matrix (OFM), which is used to define the occurrence frequency of
each n-ordered grey levels (i0, i1, · · · , in−1) that follow a certain condition
called ’connection rule’ in an image window.
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8.2.1 The occurrence frequency matrix (OFM)

In an image with L levels of quantification, the OFM of order n � 1 is a Ln

size matrix. In this matrix, each element (Pi0,i1,i2,··· ,in−1) expresses the oc-
currence frequency of the n-ordered pixels (i0, i1, · · · , in−1) following the con-
nection rule Rn(d1, d2, · · · , dn−1, θ1, θ2, · · · , θn−1). This connection rule de-
fines the spatial constraint that must be verified by the various positions of
the n-ordered pixels (i0, i1, · · · , in−1) used for the evaluation of the OFM.
This rule means that the pixel ik+1 with (0 ≺ kandk ≺ n) is separated to
the pixel ik by dk−1 pixel(s) in the θk direction. For the sake of simplicity,
Rn(d1, d2, · · · , dn−1, θ1, θ2, · · · , θn−1) will be noted by Rn in the following.

8.2.2 Textural parameters

Let’s consider an image window F of size NL×NC, where NL is the number
of lines and NC is the number of columns. The classical expression of textural
parameters concerned by this approach is given by the following expression.

Paran =
L−1∑
i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

[ψ(i0, i1, · · · , in−1)× Pi0,i1,··· ,in−1 ] (8.1)

where (Pi0,i1,··· ,in−1) is the OFM, n is the order of the parameter and Ψ is
a real function defined by ψ : INn −→ IR
The following table 8.4 gives examples of some used textural parameters.

Table 8.1. examples of some used statistical textural parameters

Parameter Formulation ψ(i0, · · · , in−1)

Mean
L−1∑
i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

ı0 × Pi0,··· ,in−1 i0

Dissymetry
L−1∑
i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

[
n−1∑
k=0

n∑
l=k+1

|ik − il| × Pi0,··· ,in−1

]
n−1∑
k=0

n−1∑
l=k+1

|ik − il|

Inv. Diff.
L−1∑
i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

⎡⎢⎣ Pi0,··· ,in−1

1+
n−1∑
k=0

n∑
l=k+1

|ik−il|

⎤⎥⎦ 1

1+
n−1∑
k=0

n∑
l=k+1

|ik−il|

8.3 New formulation

The goal is to avoid the calculation of both Pi0,i1,··· ,in−1 and the n-summation∑L−1
i0=0

∑L−1
i1=0 · · ·

∑L−1
in−1=0 which are very expensive in computing time and
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memory space.
Since it is true that:

a× b = a + a + . . . + a︸ ︷︷ ︸
b times

(8.2)

Equation 8.1 can be written in the following form:

Paran =
L−1∑
i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

ψ(i0, i1, · · · , in−1) + · · ·+ ψ(i0, i1, · · · , in−1)︸ ︷︷ ︸
Pi0,i1,··· ,in−1 times

(8.3)
During the image window scanning, each time that a n-ordered pixels

(i0, i1, · · · , in−1) that follows the connection rule Rn is obtained, the value
of ψ(i0, i1, · · · , in−1) is calculated and stored. At the end of the image win-
dow scanning, the sum of all the stored values is equal to the product
ψ(i0, i1, · · · , in−1)×Pi0,i1,··· ,in−1 . This operation discards the used of the term
Pi0,i1,··· ,in−1 as expected. Let’s now show how to discard the used of the ex-
pression

∑L−1
i0=0

∑L−1
i1=0 · · ·

∑L−1
in−1=0. Indeed, Equation 8.3 can be written as the

following.

Paran =

ψ(i10, i
1
1, · · · , i1n−1) + · · ·+ ψ(i10, i

1
1, · · · , i1n−1)︸ ︷︷ ︸

Pi0,i1,··· ,in−1 times

+ ψ(i20, i
2
1, · · · , i2n−1) + . . . + ψ(i20, i

2
1, · · · , i2n−1)︸ ︷︷ ︸

Pi0,i1,··· ,in−1 times

+ · · ·
+ ψ(im0 , im1 , · · · , imn−1) + . . . + ψ(im0 , im1 , · · · , imn−1)︸ ︷︷ ︸

Pi0,i1,··· ,in−1 times

m = Ln. (8.4)

Equation 8.4 is equivalent to the following.

Paran =
∑

(i0,i1,··· ,in−1)

ψ(i0, i1, · · · , in−1) [δ 〈(i0, i1, · · · , in−1), Rn, F 〉]10 (8.5)

where [δ 〈(i0, i1, · · · , in−1), Rn, F 〉]10 is a boolean function that takes the
value ’1’ if (i0, i2, · · · , in−1) follows the connection rule Rn and ’0’ otherwise.
Equation 8.5 can then be written as the following.

Paran =
∑

(i0,i1,··· ,in−1)Rn,F

ψ(i0, i1, · · · , in−1) (8.6)
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where (i0, i1, · · · , in−1)Rn,F
is the set of all the n-ordered pixels

(i0, i1, · · · , in−1) in the image window F that follow the connection rule Rn.
When the connection rule is defined, from a given pixel in the window F,
there is at most one n-ordered pixels (i0, i1, · · · , in−1) that verifies the con-
nection rule Rn. Thus, the set (i0, i1, · · · , in−1)Rn,F

is obtained by scanning
the window F at once. Let’s now define a function ϕRn as follows.

ϕRn : IN2 −→ INn

(p, q) �−→ (i0, i1, · · · , in−1)
(8.7)

where i0 is the pixel at the position (p,q) in the image window F and
(i0, i1, · · · , in−1) is the n-ordered pixels that the respective positions in the
image window follow the connection rule Rn. The substitution of equation 8.7
in equation 8.6 gives the following equation.

Paran =
NC−1∑
p=0

NL−1∑
q=0

ψ (ϕRn(p, q)) [δRn (p, q, F )]10 (8.8)

where NC and NL are respectively the number of columns and the num-
ber of lines of the image window F; δRn (p, q, F ) is a boolean function that
takes the value ’1’ if from the position (p,q) in the image window F, it can be
obtained a n-ordered pixel positions in F following the connection rule Rn. It
takes the value ’0’ otherwise. In practice, this function contributes to deter-
mine the variation domain of p and q. So, equation 8.8 can also be written as
the following.

Paran =
Tex∑
p=Tbx

Tey∑
q=Tby

{ψ (ϕRn(p, q))}
with0 ≤ Tbx ≤ Tex ≺ NCand0 ≤ Tby ≤ Tey ≺ NL

(8.9)

Equation 8.8 or equation 8.9 are the new formulation of statistical textural
parameters. In the following, we present an example to assess the equivalence
between the new and the classical formulation. It’s important to mention
that the proposed formulation can be parallelized while computing. Therefore,
We are now able to do classification using statistical approach in real time
independently to the image sizes.

8.4 Calculation of the dissymmetry parameter

This section helps to understand our methodology. Let’s consider the image
window F1 illustrated by Figure 1. We have randomly chosen to calculate the
dissymmetry parameter, using both the classical and the proposed approaches,
with the connection rule R2(2, 45o).
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Fig. 8.1. experimental image window

8.4.1 Classical approach

At the order 2, the classical formulation of the dissymmetry parameter is given
by the following equation.

Diss2 =
4∑
i=0

4∑
j=0

|i− j|Pij (8.10)

This approach uses the GLCM P2, which is given by the following equation.

P2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 2 0
0 0 1 0 0
1 1 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (8.11)

The evaluation of the dissymmetry parameter, according to equation 10 is
done as follows.

Diss2 = |0− 0|.P00 +|0− 1|.P01 +|0− 2|.P02 +|0− 3|.P03 +|0− 4|.P04

+|1− 0|.P10 +|1− 1|.P11 +|1− 2|.P12 +|1− 3|.P13 +|1− 4|.P14

+|2− 0|.P20 +|2− 1|.P21 +|2− 2|.P22 +|2− 3|.P23 +|2− 4|.P24

+|3− 0|.P30 +|3− 1|.P31 +|3− 2|.P32 +|3− 3|.P33 +|3− 4|.P34

+|4− 0|.P40 +|4− 1|.P41 +|4− 2|.P42 +|4− 3|.P43 +|4− 4|.P44

So Diss2 = 16.

8.4.2 New approach

From equations 8.1 and 8.10, one can deduce that for each couple of grey levels
(i,j) that the positions follow the connection rule R2(2, 45o) in the window F1,
we have:
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ψ(i, j) = |i− j| (8.12)

In Figure 8.2, the connection rule R2(2, 45o) is materialised in the image
window F1 by an arrow. Its origin (a ring) materialises the position of the
pixel ’i’ and its end (a dotted line square with rounded angles) materialises
the position of the pixel ’j’. A couple of grey levels (i,j) follows the connection
rule if and only if the position of ’i’ (respectively ’j’) is in the ring (respectively
the dotted line square) of the same arrow. Figure 2 enumerates the set of all
couples (i,j) of grey levels that follow the connection rule R2 in the image
window F1. There is a total number of 9 couples (i,j) of grey levels following
the connection rule in the image window F1

Fig. 8.2. : Illustration of the connection rule on the image window F1

One can now determine the domain of variation of p and q in equation
8.9. This domain is given by the following equation.{

Tbx = 0 Tby = 2
Tex = 2 Tey = 4

}
(8.13)

From equations 8.9 and 8.13, one can evaluate the various values of the
function ϕRn as follows.

ϕRn 2 3 4

0 (4, 2) (4, 0) (4, 2)

1 (4, 4) (3, 2) (2, 0)

2 (2, 3) (2, 3) (4, 1)

The possible values of q (2,3,4) are set in columns and the possible values
of p (0,1,2) are set in lines.
The evaluation of the dissymmetry parameter, using the new approach is then
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done as follows.

DISS2 = ψ(ϕRn(0, 2)) +ψ(ϕRn(0, 3)) +ψ(ϕRn(0, 4))
+ψ(ϕRn(1, 2)) +ψ(ϕRn(1, 3)) +ψ(ϕRn(1, 4))
+ψ(ϕRn(2, 2)) +ψ(ϕRn(2, 3)) +ψ(ϕRn(2, 4))
= ψ(4, 2) +ψ(4, 0) +ψ(4, 2)

+ψ(4, 4) +ψ(3, 2) +ψ(2, 0)
+ψ(2, 3) +ψ(2, 3) +ψ(4, 1)

= |4− 2| +|4− 0| +|4− 2|
= |4− 4| +|3− 2| +|2− 0|
= |2− 3| +|2− 3| +|4− 1|

= 16
This example confirms that the new and the classical approaches are equiv-

alent as expected. Let’s now evaluate the algorithmic complexity of the two
approaches.

8.5 Complexity evaluation

Let’s evaluate the calculation complexity and the storage requirement of each
approach. Let’s consider an image F of NL lines and NC columns, and L
the number of grey level quantification in the image. Then let’s evaluate and
compare the respective operational and the spatial complexities of the two
approaches.

8.5.1 Classical approach

Let’s consider N(ψ) the required number of operations for the evaluation of
ψ(i0, i1, · · · , in−1) in equation 2 for a given n-ordered (i0, i1, · · · , in−1) pixels.
This number is given by the following equation 8.14.

N(ψ) = O(n) (8.14)

The evaluation of the OFM requires a number N(P) of operations given
by the following equation.

N(P ) = o(NL×NC) (8.15)

Knowing that the term
∑L−1

i0=0

L−1∑
i1=0

· · ·
L−1∑

in−1=0

in equation 1 implies that

there is exactly Ln different possible n-ordered pixels (i0, i1, · · · , in−1), the
evaluation of the textural parameter by the classical approach requires a num-
ber Nclassic(Paran) of operations given by the following equation.
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Nclassic(Paran) = O(n)× Ln + o(NL×NC) (8.16)

8.5.2 New approach

Tall For each couple (p,q) of values in the definition domain, the number of
operations required for the evaluation of ψ[ϕRn(p, q)] is given in equation 9
because ϕRn(p, q) replaces only the n-ordered pixels (i0, i1, · · · , in−1) following
the connection rule Rn and where the first pixel i0 occupies the position (p,q)
in the image window F. According to equation 8.9, the number Nc of couples
(p,q) required for the evaluation of the textural parameter is given by the
following equation.

Nc = o(NL×NC) (8.17)

The required number Nnew(Paran) of operations for the evaluation of
the textural parameter Paran, using the new approach is then given by the
following equation.

Nnew(Paran) = O(n) × o(NL×NC) (8.18)

8.5.3 Comparison of the two approaches

The following equation gives the ratio between claculated complexity while
using the classical approach and the claculated complexity while using the
new approach for the evaluation of a textural parameter.

R = (Nclassic(Paran)/Nnew(Paran)) = O(Ln−1) (8.19)

With the aim to illustrate the previous equation 19, let’s evaluate the
parameter ’Mean’ in the various orders, for an image window F of size 25×25.
As connection rule, let’s consider R2(1, 0o) (for order 2), R3(1, 1, 0o, 0o) (for
order 3), R4(1, 1, 1, 0o, 0o, 0o) (for order 4) and R5(1, 1, 1, 1, 0o, 0o, 0o, 0o) (for
order 5) .
The classical formulation of the ’Mean’ parameter for an order n (2 ≤ n ≤ 5)
with 256 levels of quantifications (L=256) is given by the following equation.

μi0 =
2∑

i0=0

55
2∑

i1=0

55 · · ·
2∑

in−1=0

55
(
i0 × P(i0, i1, · · · , in−1)

)
(8.20)

With the new formulation, the same parameter is given by the following
equation.

Meann =
25−n∑
p=0

24∑
q=0

ψ [ϕRn(p, q)] (8.21)
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with ϕRn(p, q) given by the following equation.

ϕRn(p, q) = (F (p, q), F (p + 1, q), · · · , F (p + (n− 1), q)) (8.22)

where F(i,j) is the pixel at the position (i,j) in the image window F.

Table 8.5 presents the calculated complexity (number of operations) re-
quired by each approach for the evaluation of the parameter ’Mean’, for the
various orders n = 2, 3, 4, 5, using respectively the connection rules R2(1, 0o),
R3(1, 1, 0o, 0o), R4(1, 1, 1, 0o, 0o, 0o) and R5(1, 1, 1, 1, 0o, 0o, 0o, 0o), on the ex-
perimental image window F1.

Table 8.2. Comparison of the calculated complexities required for the evaluation
of the parameter Mean, using the two approaches

Order Classical Approach (CA) Proposed Approach (PA) R = CA
PA τ = R

Ln−1

2 6, 614× 104 600 110,22 0,430

3 1, 678× 107 575 110,22 0,444

4 4, 29× 109 550 110,22 0,447

5 1, 1× 1012 525 110,22 0,487

According to Table 8.5, one can notice that the proposed formulation is
about τ × Ln−1 times more economic than the classical formulation in term
of calculated complexity (number of operations required), with τ ≈ 1/2 in the
case of the parameter ’Mean’.

8.6 Storage requirement

Although the memory space is no longer a critical problem today, the higher
level of memory space gain obtained by this new approach convinces us to
present a comparative study.

8.6.1 Classical approach

In the classical approach, the evaluation of textural parameters requires the
evaluation of the OFM. For a given order n, the evaluation of the OFM requires
a memory space given by the following equation.

S(P ) = Ln (8.23)

The image storage requires a memory space given by the following equa-
tion.
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S(I) = NL×NC (8.24)

The memory space required for the evaluation of the textural parameter
with the classical approach is then given by the following equation.

Sclassic = S(P ) + S(I) = Ln + NL×NC (8.25)

8.6.2 New approach

With the new approach, the OFM is not evaluated. The computer memory
space required for the evaluation of the textural parameter is only the space
memory required to store the image, given by the following equation.

Snew = NL×NC (8.26)

8.6.3 Comparison of the two approaches

From equation 8.25 and equation 8.26 one can deduce following equation.

Sclassic = Ln + Snew (8.27)

From equation 8.27, one can notice that Ln is the memory space difference
required by the classical and the new approaches for the evaluation of an order
n textural parameter. This quantity is considerable. In fact, for an image with
256 levels of quantification, at the order 5, Ln gives 240.

8.7 Experimental results

For experimentation, let’s consider the image of size 500× 500 in Figure 8.3.
This image is obtained by concatenation of 4 Brodatz textures.

In this section, we present for each approach, the required complexity for
the evaluation of each textural parameter presented in table 1 and we make
a comparative study of the obtained results.

8.7.1 Calculated complexity

Figure 8.4. presents the required number of operations for the evaluation of
each parameter specified in table 1, using the classical and the new approaches
for the various orders. For the evaluation, we considered the connection rules
R2(1, 0o), R3(1, 1, 0o, 0o), R4(1, 1, 1, 0o, 0o, 0o) and R5(1, 1, 1, 1, 0o, 0o, 0o, 0o)
respectively for orders 2, 3, 4 and 5. We used image window of size 5x5.



90 Narcisse Talla Tankam, Albert Dipanda and Emmanuel Tonye

Fig. 8.3. experimental image

Fig. 8.4. Experimental results for the parameter ’Dissymmetry’

8.7.2 Experimentation complexity

Let’s now evaluate the required time for the evaluation of the various param-
eters specified in table 1. The image in figure 1 has been used as experimental
image. For each parameter, we evaluate the required time, using separately
the new and the classical approaches, at the various orders. For each order, the
evaluation is done for three different window size (5×5, 9×9 and 11×11).
As experimentation environment, we used a computer with AMD Athlon pro-
cessor of 706 MHz of speed and 128 Mo of RAM and we obtained the following
results.

The ’Mean’ parameter

Figure 8.5 below presents the required time variation for the evaluation of the
’Mean’ parameter
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Fig. 8.5. Experimental results for the parameter ’Mean’

The ’Dissymmetry’ parameter

Figure 8.6 below presents the required time variation for the evaluation of the
’Dissymmetry’ parameter

Fig. 8.6. Experimental results for the parameter ’Dissymmetry’

The ’Inverse Difference’ parameter

Figure 8.7 below presents the required time variation for the evaluation of the
’Inverse Difference’ parameter

8.7.3 Discussion

According to the various results above, one can notice that the required time
for a texture parameter evaluation does not necessarily increase with the win-
dow size. Using the classical approach, the required time exponentially in-
creases with the parameter order. But using the new approach, the required
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Fig. 8.7. Experimental results for the parameter ’Inverse Difference’

time doesn’t significantly change. Talla et al. in [12] showed that a combi-
nation of various orders of texture parameters gives a better result in image
classification, while compared to the texture classification using the neigh-
boring gray level dependence matrix method [11]. The above experimental
results confirm the theoretical result and show that, using the new approach,
a combination of several texture parameters for texture classification requires
less time than using the neighboring gray level dependence matrix method.
Another important advantage of this approach is that, there is no need of
reducing the number of gray level in the image [10] before computing the
texture parameter.

8.8 Conclusion

Statistical methods of image classification having proven reliable, the main
problem on which are confronted the researchers were how to reduce the com-
puting time of the frequency matrix required. The goal of this work was to
propose a new method of evaluation of statistical textural parameters without
calculating the OFM. The proposed method does not take into consideration
textural parameters, which are expressed as a quadratic or logarithmic func-
tion of the OFM. To rich this end, a new formulation of textural parameters
has been developed, discarding the used of the OFM. With the new approach,
the number of computing operations required for the evaluation of textural
parameter is reduced about τ × Ln−1 times and a gain of Ln of computer
memory space is obtained. In contrary to the neighboring gray level depen-
dence matrix for texture classification, the new approach can be parallelized
while computing. Image classification using statistical approach can now be
done in real time independently to the image size.
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Summary. Texture analysis represents one of the main areas in image processing
and computer vision. The current article describes how complex networks have been
used in order to represent and characterized textures. More specifically, networks
are derived from the texture images by expressing pixels as network nodes and sim-
ilarities between pixels as network edges. Then, measurements such as the node
degree, strengths and clustering coefficient are used in order to quantify properties
of the connectivity and topology of the analyzed networks. Because such properties
are directly related to the structure of the respective texture images, they can be
used as features for characterizing and classifying textures. The latter possibility is
illustrated with respect to images of textures, DNA chaos game, and faces. The pos-
sibility of using the network representations as a subsidy for DNA characterization
is also discussed in this work.

9.1 Introduction

Textures are everywhere: in nature as well as in human-made objects and en-
vironments. As such, texture provides important information from which to
identify objects and also to infer physical properties of scenes (e.g. gradients of
texture may indicate scene depth). Although the difference between textures
and other images (i.e. involving objects and shapes) remains unclear, such a
decision is often important because the methods applied in image processing
and analysis often differ depending on the type of images (i.e. texture against
shape analysis). Interestingly, the issues of texture definition and representa-
tion/characterization are therefore intensely intertwined.

The continuing investigations in texture have considered several alterna-
tive approaches such as the Fourier and wavelet transform, co-occurrence ma-
trices and derived measurements. Generally, textures are characterized by a
high degree of disorder and/or periodical information, or hybrids of these two
principles. The presence of periodicity is closely related to spatial correlations,
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while large levels of disorder are associated to high entropy and lack of cor-
relations. Because these two opposing features often co-exist in textures, it
is important to consider methods for representation and analysis of textures
which can be capable of accounting for these two effects.

Introduced recently [1, 2, 3], complex networks can be conceptualized as
an interface between graph theory and statistical physics, two traditional and
well-established research areas. Basically, complex networks are characterized
by the presence of patterns of connections which are different from those
observed in regular networks (e.g. lattices) or even random networks. Two
important manifestations of such ”complexity” are the small world property,
namely the fact that a pair of the network nodes tend to be interconnected
through a short path, and the scale free property, indicating that the distribu-
tion of nodes is scale invariant, implying the presence of hubs. Interestingly,
the complexity in such networks is also characterized by the co-existence of
local and global features, in analogous fashion to the organization of textures.
For instance, even random networks will present more densely connected sub-
structures (the so-called communities) as a consequence of statistical fluctua-
tions. Such an inherent representational ability of complex networks has been
explored in order to represent and analyze textures and images [4, 5]. One of
the simplest ways to represent textures as complex networks is by expressing
pixels as nodes and similarity between the gray-level or local features of the
texture image as edges. Then, complex networks measurements (see [2]) can
be obtained so as to provide an objective quantification of the properties of
the texture in terms of the topological and connectivity of the respectively
obtained network. Hierarchical extensions of these measurements [6], which
consider further neighborhoods around each node, can also be used in or-
der to provide additional information about the textures [7]. In particular,
the ability of such hierarchical features to express from local (i.e. close node
neighborhoods) to global (i.e. more distant neighborhoods) properties of the
texture contributes further to integrating the local and global aspects often
found in images. In addition to illustrating the possibility to use the frame-
work described above for image/texture classification considering a database
of real textures and some hierarchical measurements (considering parameters
different from those presented in [7], the current article also discusses the im-
portant issue of using complex network representations as a subsidy for anal-
ysis of DNA sequences obtained through chaos games (e.g. [8]), which are also
considered as part of the image database adopted in the present work. This
article starts by briefly presenting complex networks and their measurements,
and follows by illustrating the suggested approach to texture classification
considering traditional images as well as DNA images.
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9.2 Complex Networks

As a graph, complex networks involve a set of nodes and a set of edges between
such nodes. Edges can be binary (i.e. presence or absence of connection) or
weighted, and directed or not. The present work is limited to non-directed
edges. Complex networks are typically represented by a matrix W such that
W (j, i) is the weight of the edge extending from node i to node j, with i, j =
1, 2, ..., N . The characterization of the topological and connectivity properties
of complex networks can be achieved by using measurements borrowed from
graph theory (e.g. [9]) and complex network research (e.g. [3]) including but
being by no means limited to:

9.2.1 Degree and Strength Distributions

The degree of a given node is equal to the number of connections which it
makes. For weighted connections the degree of a node is called strength and
corresponds to the sum of all the weights of the respective links. The frequency
histograms of the degrees (or strengths), as well as the respectively inferred
average values, provide an important characterization of the connectivity of
the network under analysis. In particular, scale free networks are characterized
by histograms following a straight line when represented in log-log axes.

9.2.2 Clustering Coefficient

The clustering coefficient of a given node i is defined as:

Ci =
Number of connections between nodes connected to node i

Number of possible connections between these nodes
(9.1)

whenever the denominator is equal to zero, we impose Ci = 0. Note that
it follows that 0 < Ci < 1 for any possible node. Figure 9.1 illustrates the
calculation of the clustering coefficient for a simple network.

Fig. 9.1. Calculation of the clustering coefficient Ci of the node represented in
black: C = 3

5×4\2 = 3
10

.
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9.2.3 Hierarchical measurements

Several complex networks measurements, including the node degree and clus-
tering coefficient, can be generalized to take into account not only the imme-
diate neighborhood of a node, but also those which are at successive distances
(i.e. 2, 3, ...) from that specific node [6]. In particular, the hierarchical degree
of a node for hierarchical level i corresponds to the number of edges connect-
ing the nodes at distance i to the nodes at distance i + 1. The hierarchical
clustering coefficient of a given node for hierarchical level i is calculated in
the same way as the traditional clustering measurement, but considering the
edges between the nodes at distance i and the nodes at distance i + 1.

9.3 Image Representation As Complex Networks

For simplicity’s sake, the images are assumed to be a square with M×M pixels.
The transformation of an image into a graph [4, 7] considered in this work
involves the representation of each pixel as a node and similarities between
the gray levels (or other local properties such as color and depth) of pairs
of pixels as the weights of the respective edges. The so obtained complex
network can therefore be represented by a weight matrix W with dimension
M2 ×M2. It is also interesting to obtain a matrix Wt containing only the
connections defined by higher similarities between the pixels (i.e. only the
elements of W which are smaller than a threshold T are kept). The differences
between gray levels (which define the edge weights) are calculated only inside
a circular region of radius r centered at each pixel. Such a procedure avoids
border effects (the pixels near the border are less connected) and also imposes
spatial constraints (adjacency) on the obtained complex network. Figure 9.2
illustrates the representation of a simple image as a complex network including
or not the borders.

(a) (b) (c)

Fig. 9.2. (a): 30×30 sub-image with the 20×20 utile zone, (b): typical representation
of the complex network with threshold = ±2, (c): representation without the border
effect problem.
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9.4 Texture Characterization

The characterization of the texture properties of the considered images can
be accomplished by using complex networks measurements such as the node
degree (traditional and hierarchical), strength and clustering coefficient (tra-
ditional and hierarchical). These measurements can be obtained from the ma-
trix Wt by using the methodology described in [6], which involves a growing
wavefront emanating from the reference node in order to determine the suc-
cessive hierarchical levels. Two lists are used: current and next, so that the
latter contains the neighbors of the nodes in the former, to be visited at the
next step, after which the lists are updated. The average values (first mo-
ment) of each of these measurements are considered in the present work. We
consider three types of images: three categories of textures obtained from the
CUReT3 database; images of faces; and images of DNA virus sequences from
the EMBL4 site, obtained through chaos game (see below). Each of these
categories is represented by 10 respective samples, and all images are of size
30× 30. The DNA images were obtained by using the chaos game representa-
tion [10, 8]. Basically, a DNA sequence is composed by a stream of four bases
a, c, g, and t, such as cggtggca.... The image space into which such a sequence
is to be represented has a base assigned to each of its corners: a = (0, 0);
c = (1, 0); g = (1, 1) and t = (0, 1). The initial base is represented as a point
at the middle of the respective quadrant, and for each new base, the image
pixel laying in the middle of the position of the previous point and the corner
identified by the current base is incremented of 1. The considered DNA images
were obtained from virus sequences with 10000 nucleotides. Figure 9.3 shows
one of the DNA images considered in this work.

Figure 9.4 illustrates the scatterplot obtained by considering discriminant
analysis (e.g. [11]) and all the 5 types of images. More specifically, the images
were translated into respective graphs and the average node degree, strength
and clustering coefficients were calculated considering only the first hierarchi-
cal level (additional levels are considered in the next section of this article).
This set of measurement was then projected into two dimensions so as to
maximize the separation between the 5 classes, as quantified by the inter and
intra-class dispersions [12].

It is clear from this result that each of the types of images yielded a well-
defined respective cluster, with relatively little overlap between one another.
Different dispersions were obtained for each cluster, with the faces subset
of images implying the largest scattering and the DNA images yielding a
relatively compact cluster. The overlaps between some of the clusters are
largely a consequence of the projection of the data onto two-dimensions and
can be minimized by considering further hierarchical levels.

3 http://www1.cs.columbia.edu/CAVE/software/curet/
4 http://www.ebi.ac.uk/embl/
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Fig. 9.3. Image obtained from a virus DNA sequence with 10000 bases by using
the chaos game approach.

Fig. 9.4. The scatterplot obtained by canonical variable analysis considering the
first hierarchical levels of the node degree, clustering coefficient and strength. The
two main canonical variables, which are linear combinations of the considered mea-
surements, are represented as x and y.

9.5 The Effect Of Hierarchies On Classification

While the above results were obtained by using the measurements of degree,
strength and clustering coefficient considering only the first hierarchical level,
enhanced information about the spatial organization of the images can be
obtained by using further hierarchies. This possibility is illustrated in this
section with respect to the same database considered in the previous section.
The software Tanagra [13], involving a multilayer perceptron, has been applied
in order to separate the image classes. The adopted perceptron has 25 neurons
and its dynamics was limited to a maximum of 500 iterations. The learning
rate was 0.25 and the error rate threshold was 0.01. The network is fed with
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all images and respective classes (training) and then requested to classify
the same data. The quality of the classification is quantified in terms of the
quantity.

The ratio of classification was calculated for all hierarchical levels, i.e.
from 1 to 6. Note that the maximum limit of the possible hierarchical levels is
implied by the fact that the considered complex networks are finite, so that the
maximum level correspond to their respective diameters (i.e. the maximum
path length between any two nodes). The evolution of the correct classification
ratio in terms of the hierarchical levels, represented along the x-axis, is given
in Figure 9.5. Note that the ratio value obtained for a specific hierarchical
level k considers the measurements obtained for all hierarchial levels up to
k, and not just that hierarchical level k. Three evolutions of the classification
ratio are shown in this figure, each considering a different threshold value used
for translating the image into the respective complex network.

Fig. 9.5. Ratio of correct classification in terms of the hierarchical levels considering
thresholds T = 2, 4 and 6.

It is clear from these results that the use of measurements considering
progressive hierarchical levels has a definite effect in increasing the classifica-
tion ratio. Interestingly, the ratio obtained for threshold 2 presents a peak,
falling along the fifth and sixth hierarchical levels. This indicates that the
respectively threshold network, the less dense in connections among the three
considered cases, has relatively few shortest paths extending further than 4
edges.
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9.6 Concluding Remarks

The present article has shown how to represent, characterize and classify tex-
tures by using complex networks. Measurements of the topology and con-
nectivity of these networks, especially when considered in their hierarchical
versions, have an inherent ability to represent and characterize the co-existing
local and global features often present in textures, resulting particularly inter-
esting for texture analysis and classification. The potential of such an approach
has been illustrated with respect to a texture database including faces and
images obtained from DNA sequences by using chaos games. The promising
results obtained regarding the separation of such classes corroborates the use
of the complex network approach to identify between DNA images obtained
from coding and non-coding sequences, an important problem in genetics. The
possibility to use complex networks representations and respective measure-
ments as a subsidy to texture definition and characterization provides another
interesting prospect for further investigations.
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Error analysis of subpixel edge localisation

Patrick Mikulastik, Raphael Höver and Onay Urfalioglu

Information Technology Laboratory (LFI), Leibniz University of Hannover

Summary. In this work we show analytically and in real world experiments that an
often used method for estimating subpixel edge positions in digital camera images
generates a biased estimate of the edge position. The influence of this bias is as
great as the uncertainty of edge positions due to camera noise. Many algorithms in
computer vision rely on edge positions as input data. Some consider an uncertainty of
the position due to camera noise. These algorithms can benefit from our calculation
by adding our bias to their uncertainty.

Key words: Subpixel accuracy, Edge detection, Parabolic, Regression

10.1 Introduction

The low level task of precise edge detection is a basis for many applications
in image processing and computer vision.

In this work we show analytically and in real world experiments that an
often used method for estimating subpixel edge positions in digital images
generates a biased estimate of the edge position. We show analytically that
common algorithms similar to the well known Canny [1] edge detector, which
use parabolic functions for subpixel refinement of edge positions exhibit a bias
of the estimage.

So far extensive work has been done on edge localisation, as it is a crucial
task in computer vision and image processing. Nevertheless we think that we
can make some additions to this toppic. The effect of the bias revealed by our
calculation is in the same range as the uncertainty of edge positions introduced
by camera noise. Our theoretical results are verified in easily reproducible
experiments with real world data.

Some past approaches to edge localisation [2, 3, 4, 5] have shown good or
even optimal approaches for continuous signals. Nevertheless, they are not eas-
ily portable to the case of digitised images because it is the interpolation pro-
cess that introduces the bias to the edges positions. Other approaches [1, 6, 7]
use digitised images but apply no subpixel interpolation of edge positions.
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Kisworo et. al. [8] apply a local energy approach to localise subpixel edges.
However their experiments don’t show if there is a systematic bias for their
approach. Rockett et. al. [9] and Mikulastik [10] examine parabolic interpola-
tion for subpixel edge localisation. Mikulastik focuses on dealing with camera
noise and Rockett et. al. [9] find that there is no bias for edges parallel to
the sampling raster. This is because they use synthetic images for fitting their
edge model and no real world images. However, none of the researches men-
tioned above has measured or described the error that leads to a systematic
bias, that we are introducing here.

In the next section we introduce our signal model and describe a sample
edge detector similar to the detector by introduced by Canny [1]. Afterwards in
section 10.3 we show in a calculation that a parabolic interpolation generates
a bias, which we also measure in CCD camera images in section 10.4. Finally
we give some conclusions and a summary in section 10.5.

10.2 Edge Detection

The following steps lead to an edge detector similar to the Canny [1] edge
detector. We assume that the pulse response of the image acquisition system,
in our case a CCD camera, can be modelled by a Gaussian with variance
σcam. This is widely accepted and applied in the literature [11, 2]. We model
the edges to be localised by a Gaussian with variance σedge convolved with
an ideal step. An ideal step edge modelled this way would have a variance of
σedge = 0. With I(x) being the intensity at a coordinate x, the signal for an
edge at position xmax can be modelled with

I(x) =
∫
x

(hedge(x− xmax) ∗ hcam(x)) dx

with

h(x) = − x√
2πσ3

· e− 1
2 ( x

σ )2

. (10.1)

The following approach describes a 1D filter applied in horizontal direction,
for detection of mostly vertical edges. It can be applied in two passes in
horizontal and vertical direction, so that all edges in a 2D image can be
detected.

To be able to detect edges as maxima we have to generate a gradient
image. Since an ideal gradient operator would introduce aliasing to the image
we need a lowpass filter combined with a gradient. We choose the first derivate
of a Gaussian. The Gaussian acts as lowpass filter. Combined with the first
derivate we get the desired gradient. Choosing an impulse invariance design
approach we sample the analog derivate of the Gaussian to get our digital
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filter. We get minimal distortion through aliasing and windowing with σgrad =
1.0062 for a five tab filter.

Because of the gradient operation our edges now have the form of sampled
Gaussian functions. The sampled signal g(x) we get after application of the
gradient filter described above is:

∂

∂x
I(x) = g(x) = (hedge(x− xmax) ∗ hcam(x) ∗ hgrad(x))

= (hall(x− xmax)) ,

where the functions h(x) have the same form as seen in equation 10.1. The
variance of the Gaussians is:

σall =
√

σ̃2
edge + σ̃2

cam + σ2
grad

=

√(
σedge
cos(ϕ)

)2

+
(

σcam
cos(ϕ)

)2

+ σ2
grad . (10.2)

The angle ϕ is zero for edges orthogonal to the filter and greater for rotated
edges.

The generation of the gradient signal is very similar to that used in the
well known detector by Canny [1]. Many approaches now use regression with
a parabolic function to find the subpixel peak points in the gradient image
that give us the exact edge positions. The following calculation shows that
this leads to a systematic bias.

10.3 Calculation of bias

We can write the following equation for a parabola

ĝpar(x) = a · x2 + b · x + c . (10.3)

The hat on ĝpar(x) indicates an estimated value for the real value g(x),
which is not available. The maximum of the parabola lies at

x̂max = − b

2a
. (10.4)

Figure 10.1 shows an example of a parabola fitted to the signal g(x). From
the figure we can deduce that the parabola approximates the signal g(x)
only in a window with the width wfit. Outside this window the differences
between parabola and g(x) become quite big. Furthermore the signal g(x)
does not have the form of a parabola. It is just approximated by it. Therefore
the maximum value xmax exhibits a systematic bias to the real maximum
of g(x). In the following section we show the derivation the systematic error
esys = x̂max − xmax.
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Fig. 10.1. A parabola fitted to the signal g(x). It is fitted to wfit = 5 samples.
The further away the sample positions are from x̂max the more the samples of the
gradient signal differ from a parabolic interpolation.

10.3.1 Systematic error

The systematic error is a function of the window width wfit and the param-
eters σall and xmax.

esys = esys (wfit, σall, xmax) (10.5)

It is the difference between the estimated value x̂max and the real value xmax.

esys (wfit, σall, xmax) = x̂max − xmax

= − b

2a
− xmax (10.6)

For regression with a parabolic function, as described in eq. 10.3, the following
equation is valid and can be solved for a, b and c:⎛⎜⎝ x2

1 x1 1
...

...
...

x2
wfit xwfit 1

⎞⎟⎠ ·
⎛⎝a

b
c

⎞⎠ =

⎛⎜⎝ gpar(x1)
...

gpar(xwfit)

⎞⎟⎠ (10.7)

A ·
⎛⎝a

b
c

⎞⎠ =

⎛⎜⎝ gpar(x1)
...

gpar(xwfit)

⎞⎟⎠ (10.8)
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b
c

⎞⎠ =
(
ATA

)−1
AT

⎛⎜⎝ gpar(x1)
...

gpar(xwfit)

⎞⎟⎠
= M ·

⎛⎜⎝ hall(x1 − xmax)
...

hall(xwfit − xmax)

⎞⎟⎠
= M · hall(xwfit − xmax) (10.9)

with the matrix

M =

⎛⎝mT
1

mT
2

mT
3

⎞⎠ =
(
ATA

)−1
AT (10.10)

and the vectors

hall(x) =

⎛⎜⎝ hall(x1)
...

hall(xN )

⎞⎟⎠ xwfit =

⎛⎜⎝ x1

...
xwfit

⎞⎟⎠ xmax =

⎛⎜⎝xmax
...

xmax

⎞⎟⎠ (10.11)

With these expressions eq. 10.6 can be written as

esys (wfit, σall, xmax) = − b

2a
− xmax

= −1
2
mT

2 · hG,Ges(xwfit − xmax)
mT

1 · hG,Ges(xwfit − xmax)
− xmax(10.12)

For the following calculation it is assumed that the maximal sample of g(x)
is located at position x = 0. This doesn’t limit generality, since it can be
achieved by a simple coordinate transformation. Therefore we can write A as:

A =

⎛⎜⎜⎜⎝
(
−wfit−1

2

)2

−wfit−1
2 1

...
...

...(
wfit−1

2

)2
wfit−1

2 1

⎞⎟⎟⎟⎠ . (10.13)

The elements di,j of a matrix D = ATA are:
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d1,1 =
(
−wfit − 1

2

)4

+
(
−wfit − 1

2
+ 1

)4

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)4

=
wfit−1∑
k=0

(
−wfit − 1− 2k

2

)4

= 2 ·
wfit−1

2∑
k=0

k4 (10.14)

d1,2 =
(
−wfit − 1

2

)3

+
(
−wfit − 1

2
+ 1

)3

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)3

=
wfit−1∑
k=0

(
−wfit − 1− 2k

2

)3

= 0 (10.15)

d1,3 =
(
−wfit − 1

2

)2

+
(
−wfit − 1

2
+ 1

)2

+ · · ·+
(
−wfit − 1

2
+ wfit − 1

)2

=
wfit−1∑
k=0

(
−wfit − 1− 2k

2

)2

= 2 ·
wfit−1

2∑
k=0

k2 (10.16)

and

d2,1 = 0 d2,2 = d1,3 d2,3 = 0 (10.17)
d3,1 = d1,3 d3,2 = 0 d3,3 = wfit (10.18)

and the abbreviations μ and λ defined as:

μ = 2 ·
wfit−1

2∑
k=0

k4 (10.19)

λ = 2 ·
wfit−1

2∑
k=0

k2 , (10.20)

the matrix D = ATA can be written as:

D =

⎛⎝μ 0 λ
0 λ 0
λ 0 wfit

⎞⎠ . (10.21)

The inverse D−1 is:

D−1 =

⎛⎜⎝ 1
μ − λ2

μ(λ2−μwfit)
0 λ

λ2−μwfit

0 1
λ 0

λ
λ2−μwfit

0 − μ
λ2−μwfit

⎞⎟⎠ . (10.22)

Now, the matrix M = (ATA)−1AT becomes:
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M =

⎛⎜⎝ 1
μ − λ2

μ(λ2−μwfit)
0 λ

λ2−μwfit

0 1
λ 0

λ
λ2−μwfit

0 − μ
λ2−μwfit

⎞⎟⎠ ·
⎛⎜⎝

(
−wfit−1

2

)2

· · ·
(
wfit−1

2

)2

−wfit−1
2 · · · wfit−1

2
1 · · · 1

⎞⎟⎠

=

⎛⎜⎜⎜⎝
λ−wfit

4 (wfit−1)2

λ2−μwfit

λ− wfit
4 (wfit−3)2

λ2−μwfit
· · · λ−

wfit
4 (wfit−2wfit+1)2

λ2−μwfit

1
λ ·

(
−wfit−1

2

)
· · · · · · 1

λ ·
(
wfit−1

2

)
λ
4 (wfit−1)2−μ
λ2−μwfit

λ
4 (wfit−3)2−μ
λ2−μwfit

· · · λ
4 (wfit−2wfit+1)2−μ

λ2−μwfit

⎞⎟⎟⎟⎠ (10.23)

with the vectors mT
1 and mT

2 :

m1 =
1

λ2 − μwfit
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ− wfit

(
wfit−1

2 − 0
)2

λ− wfit

(
wfit−1

2 − 1
)2

...

λ− wfit

(
wfit−1

2 − (wfit − 1)
)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(10.24)

m2 =
1
λ
·

⎛⎜⎝−
wfit−1

2
...

wfit−1
2

⎞⎟⎠ . (10.25)

As an example we consider an ideal edge with σedge = 0 and ϕ = 0. For the
camera we choose σcam = 1, and for the gradient filter we set σgrad = 1, 0062
as chosen in section 10.2. For this example σall is

σall =

√(
0

cos(0)

)2

+
(

1
cos(0)

)2

+ 1, 00622 = 1.4186 . (10.26)

Figure 10.2 shows the systematic error esys as calculated in equation 10.12
for the values considered in this example. There are three curves for differ-
ent values of wfit. For greater values of wfit the systematic error becomes
greater. For xmax = 0 the systematic error is zero. In this case the samples of
our gradient function are symmetric around the maximum sample and every
symmetric function fitted through them results in the right estimated value
x̂max. The systematic bias left and right of the coordinate xmax = 0 is due
to the fact that the gradient of the image signal, which can be approximated
by a Gaussian function, is interpolated with a parabolic function. This also
explains why the bias is greater at greater values of wfit. The further away the
sample positions are from xmax the more the samples of the gradient signal
differ from a parabolic interpolation. This can be seen in figure 10.1.
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−0.5 −0.25 0 0.25 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

u
e

e sy
s(u

e)

w
fit

 = 3

w
fit

 = 5

w
fit

 = 7

xmax

e s
y
s
(x
m
a
x
)

wfit = 5
wfit = 3

wfit = 7

Fig. 10.2. Systematic error esys(xmax) for the edge position when a parabolic
function is used for interpolation of subpixel values. σall is set to σall = 1, 4186.

10.4 Experimental results

In order to verify the calculation from the last section, real world experiments
are performed. For the comparison of calculated and measured values, ground
truth data is needed. We recorded a scene containing one exact black and
white edge. This was achieved by capturing a high resolution LCD showing
a black and white edge. The edge lies vertically in the image so that in every
row of the image there is one edge location. The camera is slightly rotated
around its optical axis to achieve that the filmed edge appears slightly slanted.
This way it has the whole range of possible subpixel edge positions from
xmax = −0.5 to xmax = 0.5. Groundtruth edge positions are determined by
fitting a line through all estimated edge positions. To be sure that camera
noise is not affecting the analysis an average image was used. 1000 frames of
the test image were taken with the camera installed on a tripod. The average
value for each pixel position is used for the test image. Figure 10.3 shows a
zoomed in view of our test image taken with a Sony DXC-D30WSP 3CCD
video camera.

Figure 10.4 shows the measured bias em which is given through the dif-
ference of ground truth edge positions and estimated edge positions for each
line of the test image.

Since the bias em repeats periodically for subpixel coordinates of edges
from −0.5 to 0.5, it is sufficient to discuss one period of the signal, as can be
seen in figure 10.5. Additional to the measured bias em, also the estimated bias
esys is shown, for comparison. Measured and estimated values show only small
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Fig. 10.3. Test image for comparison of measured an calculated values. The edge
is slightly slanted.
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Fig. 10.4. Measured bias em for each line of the test image.

differences, that can be explained by small differences in our signal model to
that of the real camera.

In [10] a similar edge detector is examined in respect for the uncertainty
of edge localisation due to camera noise. A Gaussian distributed localisation
error variance of less than 0.002 pel2 for most edges was found in images with
a high PSNR of 42. This corresponds to a standard deviation of 0.044 pel.
The maximum bias esys for a parabolic function through three sample values
wfit = 3 is about 0.025 pel. This shows that the error introduced by the bias
described here has almost the same size as the uncertainty due to camera
noise and has to be considered in high level tasks that use edge positions as
input data.
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Fig. 10.5. Measured bias em for lines 170 to 285 of the test image. The dashed lines
show the the estimated bias esys for comparison.

10.5 Conclusions

This work has shown that edge detectors using parabolic functions for subpixel
edge localisation estimate biased values for the edge positions. This is due to
the fact that the gradient of the image signal, which can be approximated by
a Gaussian function, is interpolated with a parabolic function. This bias is in
the same range as errors of the edge positions due to camera noise. Therefore
it is advisable to consider this bias in high level tasks that build upon precise
edge localisation.
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Summary. This chapter presents an efficient technique for linking edge points in
order to generate a closed contour representation. The original intensity image,
as well as its corresponding edge map, are assumed to be given as input to the
algorithm (i.e., an edge map is previously computed by some of the classical edge
detector algorithms). The proposed technique consists of two stages. The first stage
computes an initial representation by connecting edge points according to a global
measure. It relies on the use of graph theory. Spurious edge points are removed
by a morphological filter. The second stage finally generates closed contours, linking
unconnected edges, by using a local cost function. Experimental results with different
intensity images are presented.3

11.1 Introduction

Edge detection is the first and most important stage of human visual process
as presented in [6]. During last decades several edge point detection algorithms
were proposed. In general, these algorithms are based on partial derivatives
(first and second derivative operators) of a given image. Unfortunately, com-
puted edge maps usually contain gaps as well as false edge points generated by

3 This work has been partially supported by the Spanish Ministry of Education and
Science under project TRA2004-06702/AUT. The first author was supported by
The Ramón y Cajal Program. The second author was partially supported by the
ESPOL under the VLIR project, Component 8.
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noisy data. Moreover, edge points alone generally do not provide meaningful
information about the image content, so a high-level structure is required (e.g.,
to be used by scene understanding algorithms). From a given edge map the
most direct high-level representation consists in computing closed contours—
linking edge points by proximity, similarity, continuation, closure and symme-
try. Something that is very simple and almost a trivial action for the human
being, becomes a difficult task when it should be automatically performed.

Different techniques have been presented for linking edge points in order
to recover closed contours. According to the way edge map information is
used they can be divided into two categories: a) local approaches, which work
over every single edge point, and b) global approaches, which work over the
whole edge map at the same time. Alternatively, algorithms that combine
both approaches or use not only edge map information but also enclosed in-
formation (e.g., color) can be found (e.g., [10], [15]). In general, most of the
techniques based on local information rely on morphological operators applied
over edge points. Former works on edge linking by using morphological opera-
tors compute closed boundaries by thinning current edge points [14]. However,
common problems of thinning algorithms are that in general they distort the
shape of the objects, as well as big gaps can not be properly closed. In order
to avoid these problems [12] introduces the use of morphological operators
together with chamfer maps. Experimental results with simple synthetic-like
images with closely spaced unconnected edges, which do not contain spurious
neither noisy edge points, are presented.

A real-time edge-linking algorithm and its VLSI architecture, capable of
producing binary edge maps at the video rate, is presented in [7]. It is based
on local information and, as stated by the authors, has two major limitations.
Firstly, it does not guarantee to produce closed contours, actually in every ex-
perimental results presented in that paper there are open contours. Secondly,
edge-linking process is sensitive to user defined parameters—threshold values.

In [5], a more elaborated edge linking approach, based only on local in-
formation, is proposed. Initially, an iterative edge thinning is applied. Thus,
small gaps are filled and endpoints are easily recovered and labelled. Finally,
endpoints are linked by minimizing a cost function based on a local knowledge.
The proposed cost function takes into account the Euclidean distance between
the edge points to be linked (2D distance) and two reward coefficients—a) if
the points to be linked are both endpoints; and b) if the direction associated to
the points to be linked is opposite. The values of these two reward coefficients
are experimentally determined. Since this technique is proposed for linking
points, similarly to [7], it does not guarantee to produce closed contours.

Differently to previous approaches, algorithms based on global information
need to study the whole edge point distribution at the same time. In general,
points are represented as nodes in a graph and the edge linking problem is
solved by minimizing some global measure. For instance, [3] presents an edge
linking scheme as a graph search problem. A similar scheme was previously
introduced in [1]. The methodology consists in associating to every edge point
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its corresponding gradient—magnitude and direction. Thus, the initial edge
map becomes a graph with arcs between nodes ideally unveiling the contour
directions. A search algorithm, such as A∗, is later on used for finding the best
path among the edge points. Although results presented in [3] are promising,
the excessive CPU time together with the large number of image dependent
parameters, which have to be tuned by the user, discourage its use.

In [11] a fast and free of user-defined parameters technique, which combines
global and local information, is presented. It is close related to the previous
approaches ([3], [1]), in the sense that graph theory is also used to compute
the best set of connections that interrelate edge points. Differently to the
previous ones, it is devised to generate closed contours from range image’s
edge points, instead of classical intensity images. Initially, edge points are
linked by minimizing a global cost function. At the same time, noisy data are
easily removed by means of an efficient morphological filter. It does not have
to go through the whole list of points contained in the input edge map, but
only over those points labelled as endpoints—points linked once. In a second
stage, closed contours are finally obtained by linking endpoints using a local
cost function.

In the current work, we propose to adapt [11] in order to process intensity
images. Range image processing techniques can be customized to work with
2D images considering intensity values as depth values. For instance, mesh
modelling algorithms, developed for representing 3D images, have been ex-
tended to the 2D image field for different applications (e.g., [4], [8], [13]). In
the same way, we propose to adapt the contour closure technique presented
in [11] in order to handle intensity images.

The remainder of this chapter is organized as follow. Section 11.2 briefly
introduces the technique proposed in [11] together with the required changes
to face up intensity images. Experimental results with several images are pre-
sented in Section 11.3. Finally, conclusions and further improvements are given
in Section 11.4.

11.2 Proposed Technique

Let I be a 2D array representing an intensity image with R rows and C
columns, where each array element I(r, c) is a value defined as 0 ≤ I(r, c) ≤
255. In order to have a direct application of the approach proposed in [11], in-
tensity values are considered as depth values; so every pixel in I(r, c) becomes
a point in 3D space: (x, y, z) = (r, c, I(r, c)). Let E be the corresponding edge
map computed by an edge point detector algorithm. Each element of E(r, c) is
a boolean indicating whether the corresponding image pixel is an edge point or
not. In the current implementation edge maps were computed by using Canny
edge detector [2]. Additionally, edge points uniformly distributed through the
first and last rows and columns were added. Added edge points are useful for
detecting a region boundary when it touch an image’s border; actually, the



118 Angel D. Sappa and Boris X. Vintimilla

Fig. 11.1. (left) Input intensity image, I . (right) Input edge map, E, computed
by Canny.

idea of imposing edge points through the image border has already been used
in [9].

Assuming both arrays, I and E (see Fig. 11.1), are given as inputs the
proposed technique consists of two stages. The first stage links edge points by
minimizing a global measure. Computed connections are later on filtered by
means of a morphological operator. The second stage works locally and is only
focussed on points labelled as endpoints. Both stages are further described
below.

11.2.1 Global Scheme: Graph Based Linking

At this stage a single polyline that links all the input edge points, by mini-
mizing the sum of linking costs, is computed. On the contrary to [5], where a
linking cost considering the Euclidean distance in the edge map is used (dis-
tance in a 2D space), we propose to use also the Euclidean distance but in the
3D space. Neighbor points in the edge map could belong to different regions
in the intensity image. In other words, using only point positions in the edge
map could drive to wrong results. Therefore, linking cost between edge points
(E(i,j), E(u,v)) is defined as:

LC(i,j),(u,v) = ‖(i, j, I(i, j))− (u, v, I(u, v))‖ (11.1)

In order to speed up further processing, a partially connected graph Γ is
computed, instead of working with a fully connected one. Since this partially
connected graph should link nearest neighbor edge points, a 2D Delaunay
triangulation of the edge map’s points is computed. Additionally, every edge
is associated with a cost value computed as indicated above, LC(i,j),(u,v).



11 Edge Point Linking by Means of Global and Local Schemes 119

Fig. 11.2. Filtering process: opening algorithm.

Finally, the shortest path in Γ that links all the edge points is extracted
by computing the Minimum Spanning Tree (MST) of Γ . The MST of Γ is the
acyclic subgraph of Γ that contains all the nodes and such that the sum of
the costs associated with its edges is minimum. Notice that the MST of the
Delaunay triangulated input edge points gives the same result than if it were
computed over a fully connected graph of those points.

Fig. 11.3(top) shows the triangular mesh and its corresponding MST, com-
puted from Fig. 11.1; input edge map, Fig. 11.1(right), contains edge points
computed by the edge detector [2], as well as edge points added over the first
and last rows and columns. As can be appreciated in Fig. 11.3(top−right), the
resulting MST contains short branches—branches defined by a few edges—,
connected with the main path. They belong to information redundancy and
noisy data. So, before finishing this global approach stage, and taking advan-
tage of edge point connections structured as a single polyline, a morphological
filter is applied. The filter is a kind of opening algorithm and consists in per-
forming iteratively erosions followed by the corresponding dilations; the latter
applied as many times as the erosion. In brief, the opening algorithm con-
siders segments of the polyline as basic processing elements (like pixels in an
intensity image). From the polyline computed by the MST, those segments
linked from only one of their defining points—referred as end segments—are
removed during the erosion stage. After ending the erosion process, dilations
are carried out over end segments left. Fig. 11.2 shows and illustration of this
filtering process; in this case it consists of four dilations applied after four
erosions. More details about the filtering process can be found in [11].

11.2.2 Local Scheme: Cost Based Closure

The outcome of the previous stage is a single polyline going through almost all
edge points (some edge points were removed during the last filtering stage).
Fig. 11.3(bottom−left) presents the result obtained after filtering the MST of
Fig. 11.3(top−right). Notice that although this polyline connects edge points
it does not define closed contours—recall that the MST is an acyclic subgraph
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Fig. 11.3. (top − left) Triangular mesh of the edge points presented in Fig.
11.1(right). (top− right) Minimum spanning tree. (bottom− left) Filtered MST—
opening algorithm. (bottom− right) Final linked edge point representation.

so that it does not contain any closed contours. Therefore, the objective at
this last stage focuses on closing open contours.

Open contours are characterized by edge points linked once—endpoints.
Since the previous filtering stage was carried out over end segments, endpoints
are easily identified; there is no need to go through the whole list of edge points
to find those only linked once. For every endpoint a list of candidate points
from the edge map E is extracted. Finally, the point with a minimum closure
cost is chosen to close the given endpoint. These stages are detailed below.

Given an end point E(i, j), its set of candidate edge points is selected by
means of an iterative process over a dynamic window, DW , centered at that
point—DW(i±m,j±n), where m = {1, . . . , t}; n = {1, . . . , t}; t = s + τ ; and
{(s < m < t) ∨ (s < n < t)}. During the first iteration s is set to zero.
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Then after each iteration it is increased by τ . The threshold τ depends on the
density of edge points in the given edge map; in the current implementation
τ was set to four.

After extracting the set of candidate points from the current iteration, a
closure cost, CC, is computed. It represents the cost of connecting each one
of those candidates with the given endpoint E(i, j). It is computed according
to the following expression:

CC(i,j),(u,v) =
LC(i,j),(u,v)

PathLength(i,j),(u,v)
(11.2)

LC(i,j),(u,v) is the linking cost defined in (11.1), which represents the 3D
distance between the points to be linked; while PathLength(i,j),(u,v) mea-
sure the length of the path—number of edges—linking those two points.
In case of no candidate points were extracted from the current window or
PathLength(i,j),(u,v) values from those candidates to the given endpoint were
equal or smaller than t, the size of DW is increased by τ , so that s and t, and
the process starts again by extracting a new set of candidate points. The new
set of candidate points does not contain those previously studied due to the
fact that the new window is only defined by the outside band. Otherwise, the
point with lowest closure cost is chosen to be linked with the endpoint E(i, j).

11.3 Experimental Results

The proposed technique has been tested with different intensity images. As
mentioned above, in all the cases edge maps were computed by using Canny
edge detector [2]. Additionally, a set of edge points uniformly distributed over
the image border (first and last rows and columns) was added. The CPU time
to compute the different stages have been measured on a 1.86 GHz Pentium
M PC with a non-optimized C code.

The illustrations used through the chapter correspond to an intensity im-
age of 256×256 pixels (Fig. 11.1(left)) and an edge map defined by 4784
points (Fig. 11.1(right)); its MST contains 4783 edges and was computed in
0.56 sec (Fig. 11.3(top− right)). The opening algorithm filters 378 edges from
the computed MST giving rise to a representation with 4405 edges in 0.03
sec (Fig. 11.3(bottom − left)). The 378 removed edges correspond to those
ones linked with noisy data or redundant edge points. Finally, 52 open con-
tours are closed in 0.05 sec. This final representation contains 4457 edges, Fig.
11.3(bottom− right)

Other images were processed with the proposed approach. Fig. 11.4(top−
left) presents the input edge map, 21393 points, corresponding to an image
of 512×512 pixels. Intermediate results, such as Delaunay triangulation of
input edge points and its MST, are also presented in Fig. 11.4. The MST is
defined by 21392 edges. The final closed contour representation is presented
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Fig. 11.4. (top − left) Input edge points, 21393 points. (top − right) Triangular
mesh. (bottom− left) Minimum spanning tree, 21392 edges. (bottom− right) Final
closed contour representation (after filtering the MST and closing open boundaries),
18517 edges.

in Fig. 11.4(bottom − right); it contains 18517 edges and was computed in
28.4 sec. Have a look at those gaps on the shoulder and top of the hat that
are successfully closed in the final representation.

Finally, Fig. 11.5(top) shows edge maps defined by 6387 and 34827 points
respectively; the corresponding intensity images are defined by 256×256 pixels
(girl) and 512×512 pixels (car). The results from the global approach stage
are presented in Fig. 11.5(middle)—filtered MST. Final results are given in
Fig. 11.5(bottom); they are defined by 5052 and 27257 edges respectively.
Information regarding CPU time for the different examples are presented in
Tab. 11.1. As can be appreciated in all the examples about 85% of the time



11 Edge Point Linking by Means of Global and Local Schemes 123

Fig. 11.5. (top) Input edge points (6387 and 34827 points). (middle) Filtered MST
(4964 and 26689 edges). (bottom) Final closed contour representation (5052 and
27257 edges).
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Table 11.1. CPU time (sec)

Global Scheme Local Scheme Total
Triangular Mesh Filtering Contour Closure Time

and MST Generation
House 0.56 0.03 0.05 0.65
Lenna 23.9 0.76 3.74 28.41
Car 80.43 2.35 11.67 94.46
Girl 0.98 0.07 0.13 1.19

is spent by the triangular mesh and MST generation. Since a non-optimized
C code is used, it is supposed that there is a room for improvement.

11.4 Conclusions and Further Improvements

This chapter presents the use of global and local schemes for computing closed
contours from edge points of intensity images. The global stage is based on
graph theory while the local one relies on values computed by a local cost func-
tion. Noisy and redundant edge points are removed by means of an efficient
morphological operator. Although this approach has been initially proposed
to handle range images, experimental results proved that it is also useful for
processing intensity images.

Further work will be focused on improving MST generation, for instance
by generating it at the same time that the triangular mesh. Additionally, the
development of new linking cost and closure cost functions, specifically de-
signed for handling intensity images, will be considered. It is supposed that
cost functions that take into account information such as intensity of pixels
crossed by the graph edges could improve the final results. Finally, compar-
isons with other approaches will be done.
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Summary. Detecting edges in digital images is a tricky operation in image pro-
cessing since images may contain areas with different degrees of noise, blurring and
sharpness. Such operation represents an important step of the whole process of sim-
ilarity shape analysis and retrieval.

This chapter presents two smoothing and detection filters which are based on
a model of blurred contours and well adapted to the detection of blurred and/or
noisy edges. These filters can be implemented in a third-order recursive form and
offer advantages in the analysis of different edge types (sharp, noisy and blurred).
Experimental analysis shows that these filters give definitely better edge detection
and localization than some existing filters.

Key words: Blurred edge model, smoothing filter, edge detection filter.

12.1 Introduction

Content-based image retrieval (CBIR) makes use of lower-level features like
color, texture, spatial layout and shape, and even higher-level (semantic) fea-
tures like annotations and user interactions to retrieve images according to dif-
ferent search paradigms. Research studies on edge detection frequently assume
that object shapes are already stored in the database (e.g., Surrey database)
rather than computed within the retrieval process. However, the identification
of edges inside digital images is a non-trivial operation in image processing.
It is more complicated when images contain not only sharp, but also blurred
and noisy regions. There are many algorithms for shape description such as
Fourier descriptor [1], moment invariants, B-Spline [2], active shape models,
wavelet descriptor [3] and statistical shape Analysis [4].

The objective of this chapter is to propose two filters: one for smoothing
and the other one for edge detection. The first filter minimizes or eliminates
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noise whereas the second one allows edge detection in digital images. The
detection filter should take into account the fact that image smoothing will
result in blurred edges. For this reason, the development of the two filters is
based on a blurred edge model.

12.2 Edge Detectors

Sharpness of object edges during an image capture depends on the diaphragm
opening, shutter speed of the camera, and the light effect in the scene. The
moving objects in the scene will be blurred and the rest of the image will be
sharp if the shutter speed is slow. However, the sharpness of the scene can
involve noise which is more visible in dark image areas. Therefore, we can
state that, by nature, a real image taken by a photo/video camera may con-
tain sharp, blurred, and noisy areas. Consequently, image analysis techniques
have to take into account these characteristics. An edge in a given image is a
set of pixels corresponding to abrupt changes of intensity value. Hence, edge
detection is the process that identifies the pixels belonging to an edge. It can
be determined based on the gradient or Laplacian. In case of the gradient,
the local maxima correspond to the edge, while in the case of Laplacian, the
zero-crossing represents the edge.

The performance of a given detector is closely related to the computation
time and the detection efficiency. A detector efficiency is often based on three
Canny’s criteria [5]:

• good detection: all edges have to be detected (without losing certain pixels
on the edge to be found),

• good localization: the edges have to be located in their ideal positions,
• low multiplicity of the response: the detector does not give multiple re-

sponses or false edges.

There are many factors which can influence the performance of an edge
detection process in real images. They include noise, blurring and the interfer-
ence between adjacent edges. Moreover, an edge can be located in a sharp area
or submerged into a noisy or blurred area. To get an appropriate detection,
it is necessary to use a detector which takes into account the particular fea-
tures of the area. The elimination of the harmful effects of these factors (e.g.,
noise) has lead to the development of many algorithms for edge detection such
as first-order operators (Roberts, Sobel and Prewitt operators), second-order
operators (Laplacian, LOG and DOG operators), multi-scale algorithms, and
filtering algorithms.

The first-order operators act as a high frequency filter, which cause high
noise sensitivity of the corresponding algorithms. Different existing variations
- the Roberts operator[6] is one of them - bring some improvement to the dis-
crete estimation of the gradient (derivative) and take into account the edge
orientation. Prewitt operator[8] and Sobel operator[7] incorporate explicitly



12 An Enhanced Detector of Blurred and Noisy Edges 129

in their filters a smoothing operation in order to attenuate moderately the
noise influence. In algorithms based on the Laplacian or second order oper-
ators, the edge pixels are located in the zero-crossing positions of the image
Laplacian (approximation of the second-order derivative of the image). This
approach has the advantage to provide thin and closed edges but has a higher
sensitivity to noise compared to the gradient approach. Different methods for
the estimation of the Laplacian generated a variety of algorithms. In the case
of the Marr-Hildreth operator[9], the Gaussian smoothing is incorporated in
the form of a LOG filter (Laplacian of Gaussian).

Multi-scale algorithms decompose an image into spatio-temporal sub-
bands by high-pass and low-pass filters and then make the fusion of the
detection results. The method proposed in [10] uses a multi-scale wavelet
decomposition. The filters of Canny [5], Deriche [11], Bourennane [12], Lag-
goune [13] and Demigny [14] can be included into the group of optimized
filters. Each one of these detectors has its own properties and peculiarities.
Canny [5], Deriche [11] and Demigny [14] have proposed edge detectors based
on a step edge model whereas the Bourennane filter [12] and Laggoune filter
[13] use the edge model of ramp and crest-line, respectively.

12.3 Filter Definition

In this section we present new filters, which are based on a blurred edge model.
The first part of this section will describe the edge models whereas the second
one will present the proposed filters.

12.3.1 Model of Blurred Edges

Edge detection in an image is a very important feature in the process of
object recognition and content-based image retrieval. Development of an edge
detector is often based on a specific property of the image. For example, when
considering the previously mentioned authors [5, 11, 14, 12, 13], each of these
researchers proposes a detector that is well adapted to sharp and noisy images
by a tuning of one or several parameters.

Figures 12.1-a to 12.1-c represent the models of step, crest-line and impulse
edges respectively, while figures 12.1-d to 12.1-f show the blurred version of
the previous edge models.

In our case, we select Figure 12.1-e as a blurred edge model. According
to its plot, the model of a blurred crest-line edge can be mathematically rep-
resented by a function C(x) (Equation 12.1) with two normalizing constants
K and λ, the blurring parameter β and the scale parameter α related to
noise. The value of the blurring parameter β varies between 0 and 1. When
β is close to zero, C(x) corresponds to a non-blurred crest-line edge model,
whereas when β is close to 1, C(x) represents a blurred crest-line edge model.
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Fig. 12.1. (a) step edge, (b) crest-line edge and (c) impulse edge. (d) Blurred step
edge (ramp edge), (e) blurred crest-line edge and (f) blurred impulse edge.

Fig. 12.2. (a) Model of blurred crest-line edges, (b) Plot of the detection filter f(x)
and (c) Plot of the smoothing filter h(x).

In addition, when α is zero, C(x) corresponds to an impulse edge. Figure
12.2-a shows the curve of this function for α=1 and two distinct values of β.

C(x) = K.e−α|x|.(λ +
sin(αβ|x|)

β
− cos(αβ|x|)) (12.1)

12.3.2 Edge Detection Filters

Let us suppose that C(x) corresponds to an edge model in an image (model
of the edge intensity variation of crest-line type along the axis x) described by
Equation 12.1. The edges in the image can be computed by a second derivative
(Laplacian) or by a first derivative (gradient) of the function C(x) according
to the following formula:

f(x) =
∂C(x)
∂x

= −K.α.e−α|x|.(λ− 2 cos(αβ|x|) +
(1 − β2)

β
sin(αβ|x|))(12.2)

We require that f(x) becomes a band-pass filter. Its impulse response has
to be an odd function, i.e.

∫
f(x)dx = 0, f(0) = 0, and f(x) = −f(−x). In

order to make it stable, this function should be convergent, i.e. f(−∞) = 0
et f(∞) = 0. Therefore, the value of λ can be derived as follows: f(0) = 0 =
−Kα(λ− 2)⇒ λ = 2. In order to guarantee that the function is odd, we can
generalize Equation 12.2 as follows (see Equation 12.3), with K1 = −2Kα
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which corresponds to the new normalization constant and sgn(−x) returns
the negative sign when x is positive and the positive sign when x is negative.
The plot of this filter is illustrated in Figure 12.2-b for α = 0.75 with different
values of β (β=0.01, β=0.65 and β=0.95). We notice that the extrema of
the curve move away of the axis y as much as the value of β increases and
approaches to one. This indicates that the filter f(x) can detect blurred or
sharp edges.

f(x) = sgn(−x).K1.e
−α|x|.(1− cos(αβ|x|) +

(1− β2)
2β

sin(αβ|x|)) (12.3)

The discrete expression for f(x) filter can be obtained using the Z-transform,
which is the sum of the causal and anti-causal parts. Each one of the two parts
is implemented in a third-order recursive form. The impulse response y(m) of
digital signal S(m) corresponding to the f(x) digital filter can be written as:

y(m) = y+(m)− y−(m) (12.4)

where y+(m) determines a left-to-right recursion (causal parts) and y−(m)
determines a right-to-left recursion (anti-causal parts) given by:

y+(m) = K1(c0.s(m − 1) + c1.s(m − 2)) − b1.y
+(m − 1) − b2.y

+(m − 2) −
b3.y

+(m− 3)

y−(m) = K1(c0.s(m + 1) + c1.s(m + 2)) − b1.y
−(m + 1) − b2.y

−(m + 2) −
b3.y

−(m + 3)

where the coefficients ci and bi are given by:
c0 = e−α(1−cos(αβ)+ (1−β2)

2β sin(αβ)), c1 = e−2α(1−cos(αβ)− (1−β2)
2β sin(αβ)),

b1 = −e−α(1 + 2 cos(αβ)), b2 = e−2α(1 + 2 cos(αβ)), b3 = −e−3α and
K1 = 1+b1+b2+b3

c0+c1
.

12.3.3 Smoothing Filters

In the case of noisy image analysis, it is first necessary to attenuate or smooth
the noise and then to detect edges. The smoothing filter h(x) can be deter-
mined as follows:

Smoothed signal : S′(x) = h(x) ∗ S(x); (12.5)

The signal edges correspond to the derivative of the smoothed signal or can be
calculated by the convolution of the detection filter and the signal as follows:

Edge of signal : f(x) ∗ S(x) ≈ ∂(S′(x))
∂x

=
∂h(x)
∂x

∗ S(x); (12.6)
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where S(x) is 1-D signal and f(x) is equivalent to the first derivative of a
smoothing filter. So, the smoothing filter using K2, which is a normalization
constant, can be calculated as follows:

h(x) =
∫

f(x)dx = K2.e
−α|x|(1− 1

2
cos(αβ|x|) +

1
2β

sin(αβ|x|)) (12.7)

The plot of this filter is illustrated in Figure 12.2-c for α = 0.75 with different
values of β (β=0.01 and β=0.95). The discrete expression for h(x) filter can be
obtained using the Z-transform, which is the sum of the causal and anti-causal
parts. Each one of the two parts is implemented in a third-order recursive form.
The impulse response y(n) of digital signal S(n) corresponding to the h(x)
digital filter can be written as:

y(n) = y+(n) + y−(n) (12.8)

where y+(n) determines a left-to-right recursion (causal parts) and y−(n) de-
termines a right-to-left recursion (anti-causal parts) given by:

y+(n) = K2(a0.s(n) + a1.s(n− 1) + a2.s(n − 2))− b1.y
+(n− 1)− b2.y

+(n−
2)− b3.y

+(n− 3)

y−(n) = K2(a3.s(n+1)+a4.s(n+2)+a5.s(n+3))− b1.y
−(n+1)− b2.y

−(n+
2)− b3.y

−(n + 3)

where the coefficients ai take the following values:
a0 = 0.5, a1 = e−α(0.5−1.5 cos(αβ)+ 0.5

β sin(αβ)), a2 = e−2α(1−0.5 cos(αβ)−
0.5
β sin(αβ)), a3 = e−α(1 − 0.5 cos(αβ) + 0.5

β sin(αβ)), a4 = e−2α(0.5 −
1.5 cos(αβ) − 0.5

β sin(αβ)), a5 = 0.5e−3α and K2 = 1+b1+b2+b3
a0+a1+a2+a3+a4+a5

.

12.3.4 Algorithm for 2-D Edge Detection

The 2-D representation of the edge detection filter can be obtained using a
convolution between the 1-D smoothing function with 1-D detection function
imposing the separability condition with respect to x and y axes. The two
filters fx(x, y) = f(x) ∗ h(y) and fy(x, y) = h(x) ∗ f(y) (see Figures 12.3-a
and 12.3-b) are obtained as follows: in order to have a cost-effective recursive
2-D implementation, the separability of the filters for image analysis in two
directions x (or m) and y (or n) is considered [11]. It means that the smoothing
in x is followed by the detection in y (horizontal edges) and the detection in x
is followed by the smoothing in y (vertical edges). The algorithm given below
represents the 2-D edge detection by the convolution of the image I(m,n) by
the proposed filters. F (n) and F (m) are the digital filters of f(x) for the axes
n and m respectively, and H(n) and H(m) are the digital filters for h(x).
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Fig. 12.3. 2-D edge detection algorithm and plot of the 2-D edge detection filters.

12.4 Experimental Results

In this section we present the results of edge detection obtained by the pro-
posed f(x) and h(x) filters and the Deriche filters. Figure 12.4-a shows syn-
thetic images containing a step edge and crest-line edge smoothed by the
Gaussian with the standard deviation σ = 10 and then altered by white Gaus-
sian noise (SNR=2). Figures 12.4-c and 12.4-d show the edges of the blurred
and noisy image (Figure 12.4-a) obtained by the application of the Deriche
filters for α = 0.35 and our filters for α = 0.35 and β = 0.25, respectively. Fig-
ure 12.5-a shows synthetic images, containing six different objects, smoothed
by the Gaussian with the standard deviation σ = 4 and then altered by white
Gaussian noise (SNR=4). Figures 12.5-c and 12.5-d represent the edges of
the blurred and noisy image (Figure 12.5-a) obtained by the application of
the Deriche filters for α = 0.85 and our filters for α = 0.85 and β = 0.25,
respectively. We can conclude that the filters proposed in this chapter give
better results compared to the Deriche filters. For example, for the blurred
and noisy image (Figure 12.4), with α = 0.35, the Deriche detector gives a
multiple edge response while our detector gives a single edge response.

We have used the proposed filters to estimate tree growth (tree age) by
identifying rings in wood samples. Figure 12.6 shows a slice of wood and the
rings detected by Deriche and our filters.

12.4.1 local edge detection

It is difficult to detect effectively edges if a single operator or a filter is ap-
plied to the whole image which may contain regions with different properties
relatively to noise, blurring and sharpness. In order to improve the detection
efficiency, we propose to segment the image into homogeneous regions accord-
ing to criteria of noise, blurring or sharpness presence. The following labels
are assigned to each segmented region: blurred region, noisy region, sharp-
uniform or quasi-uniform region and sharp region with detail levels. Then,
an appropriate edge detector is applied to each image region based on its
peculiarities.
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Fig. 12.4. (a) A synthetic image, with step and crest-line edges, blurred by the
Gaussian and altered by white Gaussian noise. (b) The ideal edges of image (a), (c)
Edges obtained by the Deriche filters for α = 0.35 and (d) Edges obtained by our
filters for α = 0.35 and β = 0.25.

Fig. 12.5. (a) A synthetic image containing six different objects, blurred by the
Gaussian (σ = 4) and altered by white Gaussian noise (SNR=4).(b) The ideal edges
of image (a),(c) Image edge from Figure 5-a obtained by the Deriche filters for
α = 0.85 and (d) Edges obtained by our filters for α = 0.85 and β = 0.25.
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Fig. 12.6. (a) Original image of a wood slice.(b) Ring shapes obtained by
Deriche filters for α = 1.125. (c) Ring shapes obtained by our filters for
α = 1.125 and β = 0.75.

We consider a region as being sharp uniform (smooth surface) if the mean
value of the pixel intensity variance is very small or almost zero (few edges).
A region is called sharp with detail levels if edges are present and the signifi-
cant variation of intensity gives a visual impression of a sharp separating line
between two adjacent plateaus in the image. The detail levels are measured
using the histogram and the entropy of the image region. In the presence of
blurred edges, the edges are available but intensity variation is weak (gradual
transition) at the border of two adjacent plateaus in the image. A region is
noisy if there is a presence and/or absence of edges whose pixel intensity (sig-
nal amplitude and frequency) varies randomly over the entire region. Figure
12.7 illustrates the Lena image containing edges in sharp, noisy (added noise),
and blurred regions. In such a case of heterogeneity, it is important to apply
an adaptive edge detection technique to each one of the regions by selecting
the most appropriate detector to the properties of the region. In order to
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identify the property of each image region we adopt the algorithm for noise
and blurring estimation, which is defined in [15].

Fig. 12.7. Image Lena containing the properties of blurring, noise, and detail levels

Figure 12.8 shows the application of our filter using the parameters fixed
for the whole image. In the first case, all the edges in sharp areas are well
detected maintaining their good localization. However, in the second case,
one can notice that the blurred and noisy edges are well detected but the
sharp edges are displaced (see edges at the hair level). Figures 12.9-a and
12.9-b show in a qualitative manner the result of area segmentation (sharp,
blurred, and noisy) followed by the utilization of our filter with parameters α
and β, which are adjusted dynamically relatively to the area property. This
result shows clearly the good quality of detection while maintaining the good
edge localization in various homogeneous image areas.

12.5 Filter Performance

In this section we analyze in a quantitative manner the performance of the
filters. First, we handle the theoretical performance of our detection filter, and
then, we discuss the experimental performance.

As mentioned in Section 12.2, the performance of the filter can be de-
termined based on three criteria: good detection, good localization, and low
multiplicity of the response (uniqueness). We apply these criteria to the eval-
uation of our detection filter. According to Canny criteria, an optimal edge
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Fig. 12.8. Result of edge detection applying our filter with the parameters fixed for
the whole image. (a) with parameters α = 1.5 and β = 0.5 and (b) with α = 0.75
and β = 0.5.

Fig. 12.9. (a) Segmentation of image Lena into sharp, blurred and noisy (homoge-
neous regions). (b) Edge detection results based on the homogeneous regions after
the segmentation.
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detection filter provides the maximum of products Σ.L and Σ.L.U , where Σ
is the signal to noise ratio SNR, L is the localization index (Pratt index) and
U is multiplicity of the response. Deriche filter has a performance Σ.L = 1.12.
Figures 12.10-a and 12.10-b show the influence of the parameters α and β of
our filter f(x) on the products Σ.L and Σ.L.U , respectively. The curve in
Figure 12.10-a shows that the filter f(x) is optimal for β = 0.87, ∀α, (product
Σ.L = 2.52) and the curve in Figure 12.10-b (product Σ.L.U) shows that the
filter f(x) is optimal for β = 0.77, ∀α.

Fig. 12.10. (a) and (b) Theoretical curves of the products Σ.L and Σ.L.U resp. for
our filter and (c) Experimental comparison of the product Σ.L between the Deriche
filter and our filter.

The following equations provide the definition of SNR, L and U respec-
tively.

SNR = 10.log(
Nb

∑
i,j Pc(i, j)

2

Nc

∑
i,j Pb(i, j)2

) (12.9)

L =
1

Ncm

Nc∑
l=1

1
1 + d2

l

(12.10)

U =
NI

Ncm
(12.11)

Ncm = max(Nc, NI), Nc and NI correspond to the number of pixels belong-
ing to the detected edges and ideal edges, respectively. Nb is the number of
noisy pixels, Pc and Pb represent the edge pixel intensity and the noise pixel
intensity, respectively. dl is the distance between the pixel of an ideal edge and
the pixel of a detected edge at the position l. Figure 12.10-c shows the ex-
perimental performance of the Deriche detection filter and our filter in terms
of good detection and good localization. This curve shows that our filter has
a better performance than the Deriche filter. It gives the maximum of the
product Σ.L for the value of β near 0.75 and any value of α.
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12.6 Conclusion

We have described two new filters for edge smoothing and detection that
depend on two parameters. The parameter β tunes the blurring influence on
the edges, whereas the parameter α is important for noise elimination. Our
filters clearly outperform the Deriche filters for β > 0, ∀α, and are optimal for
0.7 < β < 0.9 and any value of α. Theoretical and experimental results show
that our smoothing and detection filters are better adapted to sharp, blurred,
noisy or blurred and noisy images.
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13.1 Introduction

Over the past few years, biometrics and particularly face recognition and
authentication have been applied widely in several applications such as recog-
nition inside video surveillance systems, and authentication within access con-
trol devices. However, as described in the Face Recognition Vendor Test report
published in [1], as in other reports, most commercial face recognition tech-
nologies suffer from two kinds of problems. The first one concerns inter-class
similarity such as twins’classes, and fathers and sons’classes. Here, people have
similar appearances which make their discrimination difficult. The second,
and the more important complexity, is due to intra-class variations caused by
changes in lighting conditions, pose variations (i.e. three-dimensional head ori-
entation), and facial expressions. On the one hand, lighting conditions change
dramatically the 2D face appearance ; consequently approaches only based on
intensity images are insufficient to employ. On the other hand, pose variations
present also a considerable handicap for recognition by performing compar-
isons between frontal face images and changed viewpoint images. In addition,
compensation of facial expressions is a difficult task in 2D-based approaches,
because it significantly changes the appearance of the face in the texture im-
age.

In this chapter we introduce a new face recognition/authentication method
based on new face modality: 3D shape of face. The remainder of the chap-
ter is organized as follows: Section (2) reviews the recent progress in 3D face
recognition research field. Section (3) describes an overview of the proposed
approach. In Section (4), we focus on developed works for 2 1

2D vs. 3D face
matching via ICP. The section (5) describes the geodesic computation tech-
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nique for facial expression compensation. In section (6), we emphasize the
evaluations of the developed method on ECL− IV 2 3D face database.

13.2 Recent progress on 3D face recognition

Current state-of-the-art in face recognition is interesting since it contains
works which aim at resolving problems regarding this challenge. The majority
of these works use intensity faces’images for recognition or authentication,
called 2D model-based techniques. A second family of recent works, known as
3D model-based, exploits three-dimensional face shape in order to mitigate
some of these variations. Where some of them propose to apply subspace-based
methods, others perform shape matching algorithm. Figure 13.1 present our
vision and taxonomy for the face recognition techniques which can de catego-
rized in four classes: 2D vs. 2D, 3D vs. 3D, multimodal 2D+3D, and 2D vs.
2D via 3D.

Face recognition

techniques

2D vs. 2D

2D vs. 2D  

via 3D
3D vs. 3D Multimodal

2D+3D

Subspace methods

PCA (eigenfaces)/Kernel PCA

NMF (non negative matrix factorisation)

LDA (Linear Discriminant Analysis)

LDA with PCA (Fisherfaces)

ICA (Independant Component Analysis)

Geometric features

3D morphable model

Geometric feature-based

Orthogonal profiles

EGM (Elastic Graph Matching)

AAM (Active Apperance Model)

ASM (Active Shape Model)

Shape matching

ICP (Iterative Closest Point)

TPS (Thin-Plate Spline)

Geodesics (canonical form)

level curves

Curvature based

Point signature

subspace methods

Fig. 13.1. A taxonomy of face recognition techniques.

As described in [6][9][8], classical linear and non-linear dimensional reduc-
tion techniques such as PCA and LDA are applied to range images from data
collection in order to build a projection sub-space. Further, the comparison
metric computes distances between the obtained projections. Shape matching-
based approaches rather use classical 3D surface alignment algorithms that
compute the residual error between the surface of probe and the 3D images
from the gallery as already proposed in our works [13][14] and others as [11]
and [3]. In [2], authors present a new proposal which considers the facial sur-
face (frontal view) as an isometric surface (i.e. length preserving). Using a
global transformation based on geodesics, the obtained forms are invariant to
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facial expressions. After the transformation, they perform one classical rigid
surface matching and PCA for sub-space building and face matching. A good
reviews and comparison studies of some of these techniques (both 2D and
3D) are given in [10] and [7]. Another interesting study which compares ICP
and PCA 3D-based approaches is presented in [5]. Here, the authors show a
baseline performance between these approaches and conclude that ICP -based
method performs better than a PCA-based method. Their challenge is expres-
sion changes, particularly ”eye lip open/closed” and ”mouth open/closed”.

In the present chapter, we discuss accuracy of a new 3D face recognition
method using the ICP -based algorithm with a particular similarity metric
based on geodesic maps computation. A new multi-view and registered 3D
face database which includes full 3D faces and probe images with all these
variations is collected in order to perform significant experiments.

13.3 Overview of the proposed 3D face matching method

Our identification/authentication approach is based on dimensional surfaces
of faces. As illustrated by figure 13.2, we build the full 3D face database
with neutral expressions. The models inside includes both shape and texture
channels: the off-line phase. Second, a partial probe model is captured and
compared to all full 3D faces in the gallery (if identification scenario) or com-
pared to the genuine model (if authentication scenario): the on-line phase.
The main goal of the availability of full 3D face models in the gallery is to
allow comparison of the probe model for all view point acquisition.

The core of our recognition/authentication scheme consists of aligning then
comparing the probe and gallery facial surfaces. The first step, approximates
the rigid transformations between the presented probe and the full 3D face, a
coarse alignment step and then a fine alignment step via ICP (Iterative Closest
Point) algorithm [4] are applied. This algorithm is an iterative procedure
minimizing the MSE (Mean Square Error) between points in partial model
and the closest points in the 3D full model. One of the outputs of the algorithm
result is two matched sets of points in the both surfaces. For the second
step, two geodesic maps are computed for the pair of vertices in the matched
surfaces. The recognition and authentication similarity score is based on the
distance between these maps.

13.4 ICP for 3D surface alignement

One of interesting ways for performing verification/identification is the 3D
shape matching process. Many solutions are developed to resolve this task
especially for range image registration and 3D object recognition. The basic
algorithm is the Iterative Closest Point developed by Besl et al., in [4].
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Fig. 13.2. Overview of the proposed 3D face matching method.

In our approach we consider first a coarse alignment step, which approxi-
mates the rigid transformation between models and bring them closer. Then
we perform a fine alignment algorithm which computes the minimal distance
and converges to a minima starting from the last initial solution. The last
alignment step is based on this well-known Iterative Closet Point algorithm
[4]. It is an iterative procedure minimizing the Mean Square Error (MSE)
between points in one view and the closest vertices, respectively, in the other.
At each iteration of the algorithm, the geometric transformation that best
aligns the probe model and the 3D model from the gallery is computed. In-
tuitively, starting from the two sets of vertices P = {pi}, as a reference data,
and X = {yi}, as a test data, the goal is to find the rigid transformation
(R, t) which minimizes the distance between these two sets. The target of
ICP consists in determining for each vertex pi of the reference set P the near-
est vertex in the second set X within the meaning of the Euclidean distance.
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Fig. 13.3. ICP-based 3D surface alignement.

The rigid transformation, minimizing a least square criterion (1), is calculated
and applied to each point of P :

e(R, t) =
1
N

N∑
i=0

‖(Rpi + t)− yi‖2 (13.1)

This procedure is alternated and iterated until convergence (i.e. stability
of the minimal error). Indeed, total transformation (R, t) is updated in an
incremental way as follows: for each iteration k of the algorithm: R = RkR
and t = t + tk. The criterion to be minimized in the iteration k becomes (2):

e(Rk, tk) =
1
N

N∑
i=0

‖(Rk(Rpi + t) + tk − yi‖2 (13.2)

The ICP algorithm presented above always converges monotonically to
a local minimum [4]. However, we can hope for a convergence to a global
minimum if initialization is good. For this reason, we perform the previous
coarse alignment procedure before the fine one (cf. Figure 13.3).

13.5 Geodesic computation for 3D surface comparison

3D surface alignment via ICP does not have succeeded in curing the problem
of facial expressions which present non-rigid transformations, not able to be
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modelled by rotations and translations. Thus, in a second stage, we propose to
compute geodesic distances between pairs of points on both probe and gallery
facial surfaces since this type of distances is invariant to both rigid and non-
rigid transformations, as concluded in [2]. Therefore, an efficient numerical
approach called the fast marching method [16] is applied for geodesic compu-
tations. A geodesic is a generalization of straight line notion into curve spaces
[15]. A geodesic is the shortest path between two points on the considered
surface (as shown by figure 13.4).

Geodesic distance vs. euclidian distance 

Geodesic distance on full 3D face model

Geodesic distance on 2½D face model with 
facial expression 

Fig. 13.4. Geodesic distance vs. euclidian distance computations on full 3D and
partial face models with facial expressions.

13.5.1 Fast Marching on triangulated domains

The fast marching method, introduced by Sethian [15] is a numerically consis-
tent distance computation approach that works on rectangular grids. It was
extended to triangulated domains by Kimmel & Sethian in [16]. The basic idea
is an efficient numerical approach that solves the Eikonal equation |∇u| = 1,
where at the source point s the distance is zero u(s) = 0, namely. The solution
u is a distance function and its numerical approximation is computed by a
monotone update scheme that is proven to converge to the ’viscosity’ smooth
solution.

The idea is to iteratively construct the distance function by patching to-
gether small plans supported by neighboring grid points with gradient mag-
nitude that equals one. The distance function is constructed by starting from
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the sources point, S, and propagating outwards. Applying the method to tri-
angulated domains requires a careful analysis of the update of one vertex in a
triangle, while the u values at the other vertices are given. For further details
in this theory, we refer to [16].

13.5.2 Application to 3D face recognition

After 2 1
2D vs. 3D ICP alignment step, we propose to compute geodesic maps

on overlapped surfaces in both probe and gallery facial surfaces. We dispose
of a list of the corresponding vertices already provided by ICP. We consider
for more significantly and robust computation the zones limited by a pair of
vertices in probe model and 3D full face model. As shown in figure 13.5 (C)
the source vertex in probe model is noted S1, the limit vertex L1 and their
correspondants in 3D face model: the source vertex S2 and the limit vertex
L2 (see figure 13.5 (B)). Computing geodesic distances in the zone limited by
these vertices is less sensitive to errors. In fact, the mouth region can present
a hole if the mouth is opened, this introduces errors in geodesic computation
algorithms, as shown by figure 13.5 (A).

Probe model

Source point

(B) Computing geodesic map on full 3D face model

limit point

3D full face 

model
Considered zone between

source and limit points 

Geodesic map on 3D full face model

Geodesic map on partial face model
Considered zone between 

source and limit points

(C) Computing geodesic map on probe model (2½D model)

Point source

Point limite

(A) The opened mouth 

problem for computing geodesic 

distance between points 

Fig. 13.5. Geodesic maps computation: (A) the opened mouth problem, (B) com-
puting geodesic map on fill 3D face model, and (C) computing geodesic map on
partial face model.

We propose to calculate a geodesic distance map on the 2 1
2D probe model

via the extension of fast marching method to triangulated domains proposed
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by Sethian & Kimmel [16]. In fact, the algorithm starts on the source vertex
S1 and propagates along all the facial surface saving on every met vertex
the geodesic distance which separate him to the source vertex S1. All these
distances make up the vector V1 (the first geodesic map). Each line of V1

contains the geodesic distance separating S1 and the vertex having the index
i of the 2 1

2D mesh. Then, we compute geodesic distance map on the 3D mesh
with the same principle. In this case, the source vertex is a vertex S2 and
geodesic distance map is a vector V2 . Each line of V2 contains the geodesic
distance separating S2 from the vertex of the 3D mesh corresponding to the
vertex having the index i of the 3D mesh. Finally, we compute the vector V
as V [i] = |V2[i]− V1[i]| and the similarity metric is the standard deviation of
V and which we use for the recognition process.

In our implementation, we consider only vertices which are situated above
mouth. In other words, V1 and V2 contain only geodesic distance from source
point to points in the higher part of the face. In fact, we compute all geodesic
distances on facial surface 2 1

2D and we get rid of all distances which value
is more than the distance separating S1 from L1. Moreover, we compute all
geodesic distances on 3D facial surface and we get rid of all distances which
value is more than the distance separating S2 and L2. We justify our choice
by the fact that if the probe person is laughing for example, the 21

2D mesh
contains a hole in mouth. Thus, all geodesic distances computed for vertices
situated under the lower lip are very different from geodesic distances of their
correspondants on the 3D mesh which have no hole in mouth as illustrated
by figure 13.5.

13.6 Experiments and future works

In this section we present some experimental results of the presented approach
performed on ECL − IV 2 3D face database. Figure 13.6 illustrates this rich
database which contains about 50 subjects (about 50 full 3D face and 400
probe models [13]). It includes full 3D face gallery (figure 13.6 (A)), and eight
partial models including variations in facial expressions, poses and illumina-
tion (figure 13.6 (D)).

We produce for each experiment, labelled by the considered variation,
both the error trade-off curve (for authentication scenario) and the rank-
one recognition rates (for identification scenario). Figure 13.7 presents the
recognition rates for the elementary experiments and the global one (all probe
images are considered). It is shown that less the facial deformation is, more
invariant the method is. In addition, the proposed paradigm is invariant to
both illumination and pose variation problems (see figure 13.8). This is done
by, respectively, cancelling texture data in our processing scheme and the
availability of the full 3D models in the gallery dataset. The global Recognition
Rate (RR) is equal to 92.68% and the Equal Error Rate (EER) about 12% .
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(A) 2½D models for full 3D face building 

(B) Full 3D face model obtained by association of partial ones
(C) Samples from 2½D probe models

(D) All probe variations for experiments

(f): frontal (l): left profile 
(r): right profile (e): closed eyes (s): surprised (d): disgasting (h): happy (i): illuminatione 

Fig. 13.6. ECL− IV 2: new multi-view registred 3D face database.

Experiments (d) (e) (f) (h) (i) (l) (r) (s) (all)

rank-one rate (%) 80.48 92.68 97.56 90.24 97.56 97.56 97.56 87.80 92.68

Legend:(d) disgusting, (e) closed eyes, (f) frontal with neutral expressions,
(h) happy, (i) uncontrolled illumination, (l) left profile, (r) right profile, (s)
surprise, and (all) all probe images.

Fig. 13.7. Rank-one recognition rates for elementary experiments and global one.

This approach shows more significant rates in absence of expression, this is
because in presence of expression, the ICP -based alignement method provides
less accurate matched points. In order to surmount this problem, it is more
significant to perform alignment only on static regions of the face. In our
future work, we plan to combine the proposed approach with our region-based
method for mimics segmentation already presented in [12]. In this approach
the alignment only concerns the static regions of the face.

In conclusion, the presented approach is invariant to pose and illumina-
tion variations. However, it shows some limits in presence of important facial
expressions. As described in the last paragraph, it can be enhanced by per-
forming alignment and geodesic computation on only static region of the face
(cf. Figure 13.9).
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3D segmented full
face model

 Matching result 
before segmentation

 Matching result 
After segmentation

Static region

Mimic region

Fig. 13.9. Region-based ICP for more significant 3D face alignement and matching.
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Summary. Face detection has recently received meaningful attention, especially
during the past decade as one of the most prosperous applications of image analy-
sis and understanding. Video surveillance is for example, one emerging application
environment. This chapter presents a method for accurate face localization through
a coarse preliminary detection and a following 3D refinement (A3FD: Accurate 3D
Face Detection). A3FD can be useful applied to video surveillance environment
thanks to the performance and the quality of the results. In fact for many applica-
tion (e.i. face identification) the precision of face features localization is a real critical
issue. Our work is therefore focused on improving the accuracy of the location using
a 3D morphable face model. This technique reduces the false positive classification
of a face detector and increases the precision of the positioning of a general face
mask. Our face detection system is robust against expression, illumination and pos-
ture changes. For comparison purposes we also present some preliminary results on
largely used face database.

14.1 Introduction

Images containing faces are essential to intelligent vision-based human com-
puter interaction and applications. Nevertheless current recognition systems
have reached a certain level of maturity (for a complete overview see [1]),
their success is limited by the conditions imposed by many real applications.
For instance, recognition of face images acquired by a surveillance system in
an outdoor environment with changes in illumination and/or pose and ex-
pression, still remains a challenge task. In other words, the applicability of
current face detection system in real application is confined in some partic-
ular cases. Furthermore, many detection systems do not reach the level of
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accuracy required by many real applications especially in terms of precision
when it comes to face location. For instance, it is known that face identifi-
cation systems produce a more accurate result when working on normalized
faces. Our previous works demonstrate also that normalization across illumi-
nation, posture and expression could improve the quality even with a simple
eigenface classifier [2]. Summarizing the accuracy of the detection system has
a comparable or even a greater importance for real application. Furthermore,
considering that real application relies on camera presence, we need to manage
video streaming instead of static images. Considering this environment, the
percentage of detection in a single image has little importance in comparison
with the location quality. In fact we rely on the fact that, in a reasonable
period of time the face presents a scene which could be in a situation that
permits to be detected (in fact the principal causes of missed faces is related
to situational causes: posture illumination expression for example). Consider-
ing these further hypotheses, we focused our attention on issues coupled with
the accuracy of face location (in a precise localization sense and in terms of
posture and face morphology) instead of detection quality (face detection vs
face presentation in the images).
Our contributions in face detection problem are: i) Accurate 3D posture evalu-
ation based on our steepest descent approach, ii) Independence from illumina-
tion and expression changing. We do not focus our attention on improving the
percentage of correct detection; we use an efficient mixture of well known tech-
niques as first layer detector, (this brings a high true positive detection rate
but also high false positive ones) and an AdaBoost based classification, that
strongly reduce the false positive. We showed that we can refine the face loca-
tion and further reduce the false positive detection, using a technique taken
from our past experiences in face tracking algorithm. In this context, the two
largely used techniques are based on Active Appearance Model (AAM) [3]
both 2D and 3D and morphable models (MM)[4]. In these works concerning
face tracking, there are no references to detecting techniques; meanwhile, in
this chapter we also try to investigate in order to obtain faster techniques to
extract the relevant information indispensable for refinement algorithm. Fur-
thermore, our refinement algorithm relies on different approaches, instead of
the AMM or MM making it more suitable for real application (for concise-
ness, we refer to a detailed description of the differences with our tracking
approaches in our previous works [5] [6]). In these previous works, we need
several points manually selected on a face, in order to detect the initial loca-
tion (posture, morphology and expression) as a starting point for our tracking
algorithm. In this chapter, we present an approach based on 5 points that can
be quickly detected by our automatic system (our preliminary face detec-
tor) and that do not required an high precision thanks to the use of our 3D
refinement system that estimates the other morphological and posture and
expression parameters. This approach automates the accurate face detection
obtaining comparable results in terms of quality respect to the manually se-
lected points approach.
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The remaining part of the chapter is organized as follows. Section 14.2 de-
scribes the Face Detection and Features Selection algorithms that localize
face and all relevant features for preliminary posture evaluation. Section 14.3
presents an accurate posture and morphology detection approach including
robustness applied to expression and illumination parameters. Section 14.4
includes a conclusion and a discussion completing the chapter.

14.2 Preliminary face detection

In this section we underline the main characteristic of our preliminary face de-
tection strategy. As pre-described in Section 14.1, our face detection is mainly
composed by the following components: i) preliminary face detection, ii) ac-
curate localization and posture detection. Therefore, in this section we focus
our attention on the first component. This component’s goal is to detect prob-
able faces and localize few face features useful for posture evaluation. At this
stage, we do not need to take into account the percentage of correct detec-
tion or precision of the feature location, because we delegate the refinement
to the accurate localization component (Section 14.3). We also need to have
a fast detection because we focus our attention on video sequences instead
of still images and on real time application in the surveillance environment.
Our face detection algorithm works with not lateral face, and with partial oc-
clusion. We test our approach with several video databases (Hammal-Caplier
database [7], MMI Facial Expression Database collected by M. Pantic & M.F.
Valstar [8]) and AR database [9] that contain images with different type of
illumination and occlusion. Our preliminary detection algorithm relies on the
following steps:

• Adaptive Skin Detection: Aimed to detect the blobs that include faces.
Our adaptation strategy of skin model permits to cover most changes in
illumination (when in white light source).

• Local feature selection and validation: To detect some meaningful facial
features inside the skin blobs (i.e. eyes positions). Next we perform a val-
idation using AdaBoost classification with Haar features like in [10].

• Face Classification: We perform localization, normalization and classifica-
tion using Adaboost approach.

The main idea of this multi-step algorithm is to obtain an coarse-to-fine classi-
fication. Taking into consideration this idea the classification starts from rough
to precise face detection, with the correspondent growing levels of reliability
of correct classification. Following we describe each part in detail.

14.2.1 Adaptive Skin detection

This steps aim is to reduce the search area the skin-map approach. This ap-
proach doesn’t focus on precise detection of face contours. It only attempts
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to detect areas that include possible faces. Our skin detection strategy works
with one gaussian 4 on Y CbCr color space. For every pixel x of the images
we obtain the skin probability (or rather what belongs to the skin’s region de-
fined by the gaussian). Using a threshold on this probability we obtain the skin
blobs. This type of skin-map often suffers illumination problems and chang-
ing in skin colour due racial belongings. To reduce this type of disturbance
we train our gaussian using different racial skins. Respecting the illumina-
tion issue, only taking in consideration white light and the digital camera’s
white compensation, we perform what we call an adaptive skin operation. To
perform this adaptation, we arrange the skin mean value adjustment in this
manner: i) compute the skin-map, ii) dilate the skin-map region, iii) recom-
pute the mean of CbCr gaussian considering also the color of the pixel under
the new enlarged region. This process could produce an enlargement of the
skin region that can include some non face areas. This is not a problem since
our goal is not to detect the perfect face region but only to reduce the areas
of face searching in respect to an entire frame. The main advantage is that
in many cases this adaptation compensates a light change (Fig. 14.1). From
our experience, even though this skin colour adjustment enlarges the blobs
area, the eye region (even for a few pixel) still remains out of the skin-map
region. We then perform some simple morphological operations to obtain a
more precise region of skin and non skin region inside a skin blob (Fig. 14.1).

To conclude with, we perform our first area detection level that contains a
probable face. Some other strategies could be used like ellipse searching on a
gradient map and so forth. Our implementation permits to save computational
power reaching a speed of 5 frames per second in a Matlab R©implementation
(640x480 frame size on 2 Ghz Pentium IV).

14.2.2 Local feature selection and validation

After the rough preliminary facial area localizations, we obtain the image
regions where a possible face can be located. These very rough localizations
do not depend upon the face postures. At this stage we do not therefore restrict
our face detection strategies to only frontal face 5 according to our coarse-to-
fine and progressively selective strategy. To find the face inside the skin region
we use the non-skin areas included in every skin blobs. Each non-skin area
is our possible eye location. The main idea is to detect a pair of non-skin
regions that can possibly be the eyes of a face. This searching is performed
intelligently to reduce the possible pair candidates with some heuristics based
on the relative blobs’ positions. The eyes searching process is performed as
follows: i) Computing every probable pairs of non-skin region, ii) Computing

4 We do not use a mixture of gaussian because we do not need to reach a great
precision but we need to save computational time

5 Using other approach like [10] a complete scanning of the images must be carried
out and only face with posture in accord with training set can be detected.
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(a) Initial images (b) Normal Skin map

(c) Adapted Skin map (d) Skin blob after several mor-
phological operation

Fig. 14.1. Skin map process for blob detection.

the centroid of every non-skin region for each pairs, iii) Computing the affine
transformation for normalizing the box containing the eyes. This normalized
region is useful for the classification process. Fig. 14.2 shows some probable
eye regions after the affine normalization and the relative face detected using
AR database.

Fig. 14.2. Some example of probable pairs of eyes after normalization and the
relative face after the eyes classification with AdaBoost in AR database.

We build a large training set with positive and negative examples. We
used the eyes pairs images extracted with our algorithm and we labelled them
manually. Generally speaking any kind of machine-learning-like approaches
could be used to learn a classification function (for instance neural network or
support vector machines). We chose to follow the approach present in the pa-
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per of Viola et al.[10] where some computed efficient Haar features associated
with each image are used. Even though each feature can be computed very
efficiently, computing the complete set is prohibitively expensive. The main
challenge is to find these features. A very interesting hypothesis is formulated
by Viola and Jones: a very small number of these features can be combined to
create an effective cascade classifier using a variant of Adaboost. This cascade
classifier is composed in different stages.

Each stage is called a strong classifier and it is trained by the AdaBoost
algorithm with the following rules: To reject 60% of negative items and to
insure that we detect at least 99.8% of eye pairs. Our first stage uses only 3
features. For the following stages, the complexity of detection and the number
of features needed increase. Using the cascade permits to quickly drop several
non-eye pairs in the first stages and very few eye pairs. At this step we do
not need to reach a great reliability in the classification so we decide to use
only a two stage AdaBoost for speeding-up every operation. In our experiment
this classifier permit to discard the 89% of false eye pairs with no significant
percentage of correct eye pairs discarded. Fig. 14.3 shows some detected faces
in a image data base build with famous people found on internet.

Fig. 14.3. An example of a face detected with posture or even expression different
from the frontal neutral view. Note that this face is already normalized in terms of
tilting.

After the eye detection step, several simple operations are performed ob-
taining some crucial points for the eyes and mouth ( 5 points: the inner and
outer corner of the eyes and the center of the upper lip). These points are quite
stable even with expression changes. However the precision of these points is
not critical at this level of the process thanks to our refinement estimation
that we perform at the last stage.

14.2.3 Face normalization and classification

For every pair of eyes we reconstruct a face using the human face morphology
ratios based on strategies and using the detected mouth points where available.
Than we use a similar strategy of normalization adopted by eyes classification
but using a more reliable AdaBoost classifier with several stages. The goal
of this classification is to increase the reliability of the face detection system.
This degree of reliability is estimated observing at which stage a candidate’s
face is rejected. More the candidate passes stages, greater is the reliability
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degree. In the table 14.1 we present the detection results on the AR data
base. As it can noticed the correct detection results on images with black
sunglasses is not present at all, and for images exposed to a yellow illuminant
are really poor. This because we worked on the hypothesys of white illuminant
and visible eyes.
Summing up, in order to keep the false positive rate of 0.28% we paid with
a rate of true positive 72.9% without considering black sunglasses and yellow
illuminat images. The latest refinement is performed with our 3D face model
fitting system. This will increase much the rate of the correct recognition.
When this last process does not converge to the end, the face will be classified
as a probable face but not with an accurate estimated morphology position.

PhotoIndex N. CorrectDetection N. Images Characteristic
1 99 135
2 113 135 Smile
3 102 135
4 104 135 OpenMouth, CloseEyes
5 24 135 YellowLightRight
6 14 135 YellowLightLeft
7 4 135 YellowLight
11 70 135 Scarf
12 11 135 Scarf, YellowLightRight
13 4 135 Scarf, YellowLightLeft
14 92 119
15 102 120 Smile
16 93 120
17 93 120 OpenMouth, CloseEyes
18 21 120 YellowLightRight
19 14 120 YellowLightLeft
20 1 120 YellowLight
24 61 120 Scarf
25 11 120 Scarf, YellowLightRight
26 9 120 Scarf, YellowLightLeft

Table 14.1. AR database correct recognition results.

14.3 Accurate location refinement via 3D tracking
approach

To refine the quality of face location we use an extended version of our track-
ing algorithm [6]. To cover the problem of precise face location, we adopt the
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same 3D model and convergence strategy than our tracking algorithm consid-
ering the information extracted from face detection as a rough posture and
morphological parameters initialization. This type of initialization is differ-
ent from the our previous work when we compute the precise face parameters
(posture, morphological and expression) using several points selected by hand,
since it is difficult to detect these points automatically with the great preci-
sion required. So in real application this strategy can not be applicable. This
is the main problem that we solved using a rough posture and morphological
initialization and when refining the parameter using convergence algorithm.
To perform this refinement we include the morphological basis used in our pre-
vious point based initialization, in the minimization coupled with the posture
and expression parameters.

In terms of appearance, the texture of the subject is not extracted using
the initialization parameters, since that the rough initialization do not provide
an accurate texture. So we decided to extend our tracking algorithm including
texture appearance parameters such as in AAM or MM. We compute these
parameters using eigenface techniques on a face database properly normalized
using our 3D mask (see [2] for detailed description) and include the first four
principal eigenface in the linear appearance part (see formula 14.2) of our
formulation in the same manner as the illumination parameters. This means
that we also reconstruct the texture of the face using a linear combination of
eigenface, and that this can be performed in the same way as the illumina-
tion. Summarizing we include morphological and appearance parameters in
our minimization techniques obtaining a technique to refine a rough localiza-
tion. This technique works well under the constraint that the initial rough
initialization needs to be not far from the real posture, at least for translation
and tilting. Furthermore, to perform the convergence, the frame image needs
to be blurred for eliminating the initial difference between real face and the
reconstructed ones (we perform a gaussian pyramid of blurring). For concise-
ness, we refer to our previous work [6] for complete mathematical dissertation
over our minimization. Following we present the aforesaid adaptation of our
tracking algorithm.

Summarizing, our minimization process relies on the presence of a face
model. Like in our tracking approach, this face model includes a basis of
movement to cover deformation due to expression and morphological aspect.
We also include an appearance set of parameters obtained using eigenface
approach. Than we have an average face and the four principal components.
As in the eigenface approach, a linear combination of this eigenface can pro-
duce a certain appearance. Considering this idea, we can introduce in our
tracking algorithm the eigenfaces as the appearance parameters using a linear
appearance strategy.

Our goal is therefore to obtain posture, morphological estimation param-
eters and Action Units [12] deformation parameters in one minimization pro-
cess between one frame and a average template of face Tavg plus the linear
combination of eigenface (that we call Tavg+eig) that produce the most ac-
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curate approximation of face. We rely on the idea that face 2D template
Tavg+eig(x), will appear in the actual frame I(x) albeit warped by W (x; p),
where p = (p1, . . . , pn, α1, . . . , αm) is vector of parameters for 3D face model
with m parameters (morphological and Action Units for expression) and x
are pixel coordinate from image plain. Thanks to this assumption, we can ob-
tain the movement and morphological-expression parameter p by minimizing
function (14.1). If Tavg+eig(x) is the template with correct pose morphology
and expression p and I(x) is the actual frame, assuming that the image do
not differs to much respect with reconstruct Tavg+eig and that the prelim-
inary detection posture has the satisfactory precision, the correct pose and
morphology and expression p can be obtained by minimizing the sum of the
square errors between Tavg+eig and I(W (x; p)):(∑

x

[I(W (x; p)) − Tavg+eig ]2
)

(14.1)

For this minimization we use the Lucas-Kanade approach [13] with forward
additive implementation [14].

Fig. 14.4. Comparisons between initialization with preliminary estimation (white
mask), and after the minimization (black line) on MMI database.

Now to include the estimation of eigenface parameters inside our mini-
mization algorithm, we consider the problem as a linear appearance model so
the Tavg+eig becomes only the average face Tavg and the eigenface parameters
are put inside the appearance factor. As occurs for illumination basis:

∑
x

[I(W (x; p)) − T (x)−
m∑
i=1

λiAi(x) −
n∑
j=1

σjEigj(x)]2 (14.2)
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where Ai with i = 1, . . .m and Eigj with j = 1, . . . nis a set of known ap-
pearance variation images and λi and σj with i = 1, . . .m and i = 1, . . . n are
the appearance parameters. Global illumination change can be modelled as
described in our previous work and the changing in texture due the appearance
of the face can be also modelled as linear combination of computed eigenface
with average face. So thanks to linear appearance variations techniques, this
function can be also minimized using a Lucas-Kanade like approach. Con-
cluding, the convergence of this process brings further information upon the
reliability of face detection. In fact in case of false positive our approach do
not converge or if it converge, it converges to unreliable parameters. From
our preliminary test, this occurs for a 97% using AR and MMI database and
with 89% over more complex our own database. Concluding this last refin-
ing step of the detection algorithm, demonstrates some interesting promising
results in terms of precision. In fact we perform a further comparison using
our previously developed system, that use several manually placed points, and
we obtain that the difference in terms of posture, expression and morphology
parameters estimated is still confined. This results shows that the proposed
strategy obtains a comparable performance in terms of precision. This results
shows that the proposed strategy obtains incomparable performance in terms
of precision. This is a promising result for the correct functioning of the face
tracking system. Furthermore thanks to the last detection step, we have an
increase in the correct classification due to the reducing of the false positive
classification rate. These preliminary results will be verified in the close future
on a more extensive test using various database.

14.4 Conclusion and discussion

The main characteristics of this 3D morphable face model-based detection
algorithm can be sum up as:

• Reducing the percentage of false positive classification.
• Increasing the precision in the positioning of the face mask. This is not

fundamental just for tracking algorithms, but also for the classification
algorithms based on appearance and consequently on the correct normal-
ization of the face.

• The minimization process in the last step of the detection, extract not
only the position of the face, but also some morphological and appearance
parameters (eigenfaces coefficients) that can be used directly as feature for
an identifier. We showed in a past work [2] how the normalized face based
eigenfaces coefficients can ease the classification process. In this case we
can combine some morphological features (related to the face morphology)
to the eigenfaces parameters. This can increase the recognition rate of an
identification block.
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Next step will be an exhaustive testing of the whole system on the same
real cases, but on bigger surveillance oriented databases. We have planned
also to develop the identification system based on the parameters extracted
from this detection process.
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15.1 Introduction

Models of shape are used widely in computer vision. They are of great interest
in objects localization, tracking or classification. Many objects are non-rigid,
requiring a deformable model in order to capture their shape variability. One
such model is the Point Distribution Model (PDM). An object is modeled in
terms of landmark points positioned on contours. By identifying such points
on a set of training examples, a statistical approach (principal component
analysis, or PCA) can be used to compute the mean object shape, and the
major modes of shape variations. The standard PDM is based purely on lin-
ear statistics (the PCA assumes a Gaussian distribution of the training ex-
amples in shape space). For any particular mode of variation, the positions
of landmark points can vary only along straight lines. Non-linear variation
is achieved by a combination of two or more modes. Our approach encodes
shapes with a set of particular points resulting from a polygonalization pro-
cess. This guarantees the reversibility, in the construction process of the final
model. However, shapes could have different numbers of points encoding their
contours, which is not convenient for the PCA. This problem is solved with
a controlled matching process which ensures that for every point of a given
shape contour, we could find a destination point in any other contour. This
procedure is explained in 15.3. In section 15.2, we show how we encode shapes
contours and how we compute their discrete parameters. Section 15.4 explains
how the final model is extracted. But first of all, let us talk about previous
works about shape models.

In [20], we focused on shape matching and recognition, but in this chapter
we extend the approach to extract deformable models from a set of shapes.
Many approaches are proposed for shape models construction. For studying
shape variations, these approaches could be ’hand-craft’, semi-automatic or
automatic. Yuille and al [5] build up a model of a human eye using com-
binations of parameterized circles and arcs. This can be effective, but it is
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complicated, and a completely new solution is required for every new case.
Staib and Duncan [6] represent shapes using fourier descriptors of closed
curves. The complexity depends on coefficients and the generalization is not
possible to open contours. Kass et al [7] introduced Active Contour Models
(snakes) which are energy minimising curves. When no model is imposed, they
are not optimal for locating objects which have a known shape. Alternative
statistical approaches are described by Goodall [8] and Bookstein [9], they use
statistical techniques for morphometric analysis.
The most common modelling variability approach is to allow a prototype to
vary according to some learned model. Park and al. [10] and Pentland and
Sclaroff [11] represent the outlines or surfaces of prototype objects using finite
element methods and describe variability in terms of vibrational modes. Turk
and Pentland [12] use principal component analysis to describe the intensity
patterns in face images in terms of a set of basis functions, or ‘eigenfaces’.
Poggio and Jones [13] synthesize new views of an object from a set of example
views. They fit the model to an unseen view by a stochastic optimization pro-
cedure. In [14], computing a curve atlas, based on deriving a correspondence
between two curves, is presented. The optimal correspondence is found by a
dynamic programming method based on a measure of similarity between the
intrinsic properties of curves. Our approach has a common part with their
technique in the matching process shown in section 15.3 which is a pre-stage
to statistical analysis and model computing. But our technique is discrete, it
does not subdivide uniformly contours and optimize correspondence between
two sets of points with different sizes. The extraction and characterization of
these points is explained in the following section. The section 15.3 deals with
the process of matching between shapes. When this process is optimized on
all shapes, we extract their statistical representative in section 15.4.

15.2 Data adjustment

Let us consider two binary figures F and F ′, each of them contains only one
connected component, without hole, called shape in the following and denoted
respectively by f and f ′. We proceed by a registration and scaling process. f
and f ′ are aligned according to their maximal elongation (principal component
associated to the first eigen vector) with maximum interior intersection. These
operations are based on moments of order two computed for each shape, they
produce ellipses of better approximation describing shapes orientation and
describe dispersion of data.

Let us now consider the respective borders of each shape, that is to
say the set of points that belongs to the shape and that have at least one
4−background neighbor. Note that we consider then 8−connected borders.
Let us denote respectively by C and C′ the borders of f and f ′. We suppose
that the border C contains n points and the border C′ contains M points
with N not necessary equals to m. These points are the extremities of the
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segments obtained by Debled’s linear polygonalization algorithm [1]. Let us
denote by Pi with i from 0 to n the extremities of segments extracted from
C, remark that P0 = Pn, and P ′

j with j from 0 to m the extremities of seg-
ments extracted from C′ with P ′

0 = P ′
m. On each point Pi and P ′

j we compute
parameters that will help to associate a cost to each pair of points (Pi, P ′

j).
The first parameter to compute is the distance between the points of one

pair. So, we consider the Euclidean distance:

d(Pi, P ′
j) =

√
(xPi − xP ′

j
)2 + (yPi − yP ′

j
)2

The two other parameters we compute compare locally the two borders C
and C′. One measures the difference between the curvatures in the points Pi
and P ′

j and the second compares the normal vectors.
To the pair of points (Pi, P ′

j) we associate the difference of curvatures :

κ(Pi, P ′
j) =| κPi − κP ′

j
|

In order to avoid to associate points that would be near, with a quasi-
similar local curvature but with inverse curve orientation, we compute a last
parameter that compares the normal vectors at the points Pi and P ′

j . We asso-
ciate to the pair of points (Pi, P ′

j), the angle made by the two normal vectors :

α(Pi, P ′
j) =

̂−−−−→
c(Pi)Pi,

−−−−−→
c(P ′

j)P
′
j

Fig. 15.1. Discrete parameters computation: polygonalization, curvature and nor-
mals. Figures a and b illustrate the polygonalization process. Figures c and d show
osculator circles used in figure e to compute curvature=1/R and extract the normal
as an extension of the line handling the radius.

Figure 15.1 illustrates the discrete parameters computation. We suppose,
at this stage, that for each point Pi, P ′

j we know its curvature, its curvilinear
coordinates and its normal. We will now quantify curves matching, for this
reason, lets consider a mapping M of the two curves:
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M : [0, n] −→ [0,m],M(Pi) = P ′
j .

Our goal is to minimize a measure of similarity on this mapping. Lets define
this measure by φ[M ] =

∑
F (Pi, P ′

j) where F is similarity cost function.
F is computed by considering the distance parameter between each pair of
points, the curvature difference and respective normal vectors angle. We have
to precise how should F be quantified:

F [0, n]× [0,m] −→ R+

F (Pi, P ′
j) = d(Pi, P ′

j) + κ(Pi, P ′
j) + α(Pi, P ′

j)

Note that in order to make more robust and efficient optimization, we chose to
add to coefficients k1 and k2 ε[0, 1] in order to control the influence of d(Pi, P ′

j)
and κ(Pi, P ′

j) respectively in the optimization. By considering k1 = 1 − k2:
F (Pi, P ′

j) = k1d(Pi, P ′
j) + k2κ(Pi, P ′

j) + α(Pi, P ′
j). For more details see [20].

15.3 Matching optimization

This stage is important to get correspondence for every point Pi in C with P ′
j

in C′.
Before proceeding with the optimization process, based on dynamic pro-

gramming, lets define the structure which will be used. This structure, as
shown in figure 15.2 is a grid of intersections expressing the cost F (Pi, P ′

j). So
we can consider that our grid is n×m elements where each intersection of the
axes joining Pi and P ′

j is the cost of matching Pi to P ′
j . This structure con-

tains twice the same matrix for circular matching reason. When we suppose
for example that P0 is matched to P ′

0, we update all other costs according to
this choice. It is important to notice that the global cost function is monotic
in the sense that we could not match point Pi+1 with P ′

j−1 if we matched
before Pi to P ′

j as illustrated in the right part of figure 15.2. That is to say
that the update for a cost between a pair of points (Pi, P ′

j) could only be done
by adding min(cost(Pi−1, P

′
j−1), cost(Pi−1, P

′
j), cost(Pi, P

′
j−1)).

This is the application of the direct acyclic graph (DAG). The idea is to
find a path which permits the matching of all chosen points of polygonalization
with the minimum cost [19]. The minimum cost path determines the pairs of
points to be matched while going up and picking the positions i and j.

We made tests on simple and complex shapes. For each pair of shapes, we
proceed by a registration process, then we compute the intrinsic properties
and finally we search the best path candidate to join all points forming the
corresponding contours. We can modify the final result, by modifying the
associated weighted parameters to curvature and curvilinear coordinates. The
complexity is linear in the registration and parameters computing processes
but logarithmic in the optimization stage. Figure 15.3 illustrates the result
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Fig. 15.2. Matching optimization with directed acyclic graph.

Fig. 15.3. Simple and complex shapes matching examples.

we obtain on the examples of figure 15.1 (left) and a more complex shape
matching (right).

This approach as described in [20], is useful for shape recognition as we can
find the most similar element of a form among others by finding the smallest
cost of matching.

15.4 Model extraction

The principal idea of the point distribution model (PDM) is that each form
can be defined with a set of points. This form and its model of deformation,
computed over a base of the form, can be statistically studied. As we detailed
in the previous sections, each form is described by a set of outline landmarks
(xi, yi). Lets define each form from the set by X1≤i≤n = (x1, y1, ..., xp, yp)T .
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As we said before, Xi and Xj �=i could have different sizes (number of land-
marks). This is not ideal for statistical analysis. The matching process, already
describe, resolves this problem by finding for each point pi of Ci (contour of
Xi) a point p′j in C′

j (contour of X ′
j) in a context of best fitting. If we suppose

that pi is matched to two points p′j and p′k of C′
j , pi should be twice added in

a new vector X̂i rather than Xi. Thus, we can construct new vectors X̂i and
X̂ ′

j with:

size(X̂i) = size(X̂ ′
j) = max(size(Xi), size(X ′

j))

This procedure can be generalized to n shapes by choosing size(X1≤i≤n) =
max(size(X1≤i≤n)). All new vectors will have the same size and are ready for
the statistical analysis. The linear statistical analysis consists in transforming
the original data within a linear transformation optimizing a geometrical or
statistical criteria. The principal components analysis (PCA) is one of the
most known methods based on statistics of second order, works of Cootes and
al. [2] give more details on mathematical bases. We include here these results
and adapt them to our problem. PCA is a factorial method of multidimen-
sional data analysis. It decomposes a random vector V into uncorrelated com-
ponents, orthogonal and best fitting the V distribution. These components are
decreasing-ordered. N representatives of X create a cloud of n points called
observations. In a geometrical context, the decomposition of X is defined by
the eigen vectors of the covariance matrix C:

C =
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)T , X̄ =
n∑
i=1

Xi

where X̄ is the mean shape. C could be diagonalized to give (φi, λi)i=1,...,p,
where φi are the eigen vectors and the λi are the eigen values. Hence, an
observation X is defined by:

X = X̄ + φb

where b = (b1, ..., bp)t is the observation vector in the new base:

b = φt(x− x̄)

The obtained decomposition can approximate the observations and quan-
tify the error. We have just to select a number m, m ≤ p, of modes in the
modal base to reconstruct an observation X :

X = X̄ + φmbm

where φm is a sub matrix p ×m of φ containing m eigen vectors and bm =
(b1, ..., bm)T is a representation in a m-dimensional space defined by the m
principal components. New instances, plausible to learned observations, can
be created by choosing b in the limits. Typically, the variation interval [2] is:
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−3
√
λi ≤ bi ≤ +3

√
λi

The new shape in figure 15.4 is created from the mean shape by combining
two modes of variations.

Fig. 15.4. Basic idea of the algorithm: according to mean shape and principal modes
of variations compute a model able to generate plausible new shapes.

Before carrying tests, some points require to be seen. The first point is that
the number of segments obtained by polygonalization can vary according to
the first chosen point. At worst of cases, we will have a segment more (i.e. a
point more). This is not a problem considering that the matching deals with
shapes not having the same number of points on their contours(landmarks).
And on another side the contour of a form can be reconstructed, with the
same way, from two different polygonalizations without any loss. A second
aspect of our approach is that it is very fast compared to others considering
that polygonalization is useful for encoding contour of a shape, is also used
to deduce the curvature in any point as well as the normal.

15.5 Results

Starting with a learning stage within a set of fishes, we proceed by the already
described steps. We align shapes (scaling, rotation and translation) according
to a common referential so that the sum of distances of each shape to the mean
D =

∑ |Xi − X̄|2 is minimised. The mean shape is initialized equal to the
first shape and updated each time we introduce a new one. We compute then
different discrete parameters after a polygonalization process applied to each
shape and the mean one. We encode thus all the shapes (their landmarks)
by curvatures and normals. We denote here that the curvilinear abscissa is
used to course contours. Matching optimization is then done between shapes
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according to the mean shape. When all shapes are best matched, we compute
the covariance matrix and we diagonalize it to obtain eigen values and vectors.
The eigen properties describe how shapes vary linearly from the mean one.
Eigen vectors give the directions of this variation and eigen values give the
proportion. By analyzing different eigen values, we extract important modes
of variation and we generate the model according to mean shape and the kept
modes of variations. We keep always a number of modes which covers more
than 90% of variations. With a set of fishes, a sample is shown in figure 15.5,
we kept 24 modes of variation and by varying each mode, we obtain results
in figure 15.6. If we have more shapes, it would be obvious that the number
of modes will increase until reaching a limit. This is due to the fact that
variations between shapes belonging to the same class are limited.

Fig. 15.5. A sample of learning data: a set of fishes.

15.6 Conclusion

We have presented a 2D shape model construction method based on shape
outlines. The approach is discrete and independent of scaling and initial po-
sitions of objects. Our contribution is basically at the process of matching in
opposition to methods based on manual landmarking or uniform subdivision
of contours. In the proposed method, the points result from a polygonaliza-
tion process that allows object reconstruction and is adapted to any 2D shape.
Note that noise could be a source of inefficiency specially in polygonalization
process, but this can be avoided by fuzzy polygonalization [17]. Principal com-
ponents analysis allows to generate models linearly, but has also its own limits.
For any particular mode of variation, the positions of landmark points can vary
only along straight lines. Non-linear variation is achieved by a combination of
two or more modes. This situation is not ideal, firstly because the most com-
pact representation of shape variability is not achieved, and secondly because
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Fig. 15.6. New statistical generated models: first row: new models according to
the first mode of variation −3

√
λ1 ≤ b1 ≤ +3

√
λ1, the second row results from the

second mode of variation and the final row is a combination of some retained modes
of variation.

implausible shapes can occur, when invalid combinations of deformations are
used. Attempts have been made to combat this problem. Sozou et al’s Poly-
nomial Regression PDM [16] approach allows landmark points to move along
combinations of polynomial paths. Heap and Hogg’s Cartesian-Polar Hybrid
PDM [15] makes use of polar coordinates to model bending deformations more
accurately. Sozou et al [18] have also investigated using a multi-layer percep-
tron to provide a non-linear mapping from shape parameters to shape. We
could use these researches to improve our method. Finally, extension to 3D is
under study in spite of problem of landmark order that will not be determined
in a similar way between shapes.
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Summary. A new circle estimator is proposed for solving heavy subpixel error
on circle center in the case of noticeable distortion. It is based on an innovative
point of view over active contours process blending mathematical morphology and
electronic phenomenon that furnishes a multi-level image in a single pass from the
approximated form of objects to a full detailed one. A comparison with least-mean
squares method supports that a sensitive improvement can be obtained compared
to a more classic method.

Key words: Discrete circles, geometric noise, Radon transform, model fit-
ting, active contours

16.1 Introduction

Active contours have been developed to overpass the limitations of classic
segmentation tools as filtering, for example, leads to problems of segmenta-
tion as unconnected or incomplete contour, notably due to contrast variation,
difficulty to find optimal parameters, noise, etc. Active contours are one of
the best known and widely used solution to avoid these problems. The lim-
itation of these methods is to give a unique representation of the form that
can be assimilated at the scale of the representation, only allowing to have n
scale representation at the price of n computation cycles. Contrariwise, math-
ematical morphology [1], [2] furnishes a tool that corresponds to this idea of
multi-scale representation. Geodesic dilation is one of the basic mathematical
morphology techniques, related to geodesic reconstruction and watershed al-
gorithm. Although mainly numerical implementations of these techniques are
available for usual real time applications [3], [4], an intuitive interpretation
of these operations allows high speed imaging. A known limit of geodesic op-
erators is that they do not take into account the regularity of the shape of
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the objects. But, the second connexity notion, developed by J. Serra in [2],
leads to consider non-adjacent objects as being connected. In this context,
the authors have decided to explore a possible generalization to the regularity
of the shape of the objects. Authors have also noticed that another aspect is
very important for the notion of objects’ regularity: The scale from which the
object is observed but multiscale analysis needs multiple wave propagation.
In order to be compatible with high speed imaging, authors have studied a
phenomenon producing propagation of wavefronts that have an increasing reg-
ularity along the height of the transition part. It is presented in the following
section.

16.2 Active contours

Let us consider a bidimensional regular discrete (N,M) length grid Ω on which
the following bistable diffusive system is defined:

dvn,m

dt = Dn,m [vn−1,m + vn+1,m + vn,m−1 + vn,m+1 − 4vn,m]
−vn,m (a− vn,m) (1− vn,m) .

(16.1)

where Dn,mis a local diffusion parameter and a, a threshold parameter.
The system is completed by the Neumann conditions (zero-flux conditions)
on the border ∂Ω of the definition domain Ω, so that:

∂vn,m
∂η

= 0 if (n,m) ∈ ∂Ω. (16.2)

where ∂/∂η denotes the outer derivative boundary.
The study of this system leads the authors to consider the emerging propa-

gation phenomena over homogeneous and inhomogeneous grid cases to deduce
a generic image processing method.

16.2.1 Homogeneous Grid Case

In order to simplify, the local diffusion parameter is considered as a constant

Dn,m = D ∀ (n,m) ∈ Ω . (16.3)

This is a discrete version of the FitzHugh-Nagumo partial differential equa-
tion (PDE). In the uncoupled case, i.e. when D = 0, vn,m = 0 and vn,m = 1,
∀{n,m} are two attracting steady states, while vn,m = a, ∀{n,m} is an unsta-
ble equilibrium point of the system, acting as a threshold. In case of strong
coupling, i.e. when D is large, we expect that a traveling wave will propagate
depending on the value of a with a constant speed so that if a< 1/2 (a> 1/2
resp.), the steady state v = 1 (v = 0 resp.) will propagate at the expense of
the steady state v = 0 (v = 1 resp.). When a=1/2, no propagation occurs.
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The response system also depends on initial conditions. For example, a
marker, defined by vi,j(t = 0) = 1 for a set of (i, j) values and vk,l(t = 0) = 0
otherwise, imposes the kind of traveling waves due to its symmetry. The two
main propagating structures are the planar and the circular wavefronts.

Planar Waves.

They emerge from a rectangular marker (Fig. 1-A) where two planar wave-
fronts propagate in opposing directions. Such propagation reduces the system
to a one-dimensional problem that gives us:

dvn
dt

= D [vn−1 + vn+1 − 2vn]− vn (a− vn) (1− vn) . (16.4)

Fig. 16.1. A) A planar wavefront propagation using a grayscale representation
where white corresponds to v = 1 and black v = 0. Top left inset shows the marker.
Other insets illustrate the propagating wavefronts at different times in a.u. (arbitrary
units). B) v100,n at different times corresponding to the insets of Fig1.a), illustrating
the constant velocity. Dot line: marker, continuous lines: propagating wavefront at
t = 40, 80 and 120 a.u.. Parameters: a = 0.1, D = 1.

This system has been widely studied and some important results can allow
us to characterize the process of propagation, although no explicit overall
analytical expression of the wavefronts is available. Among these results, the
differential-difference can be written in a case of strong nodes coupling, using
continuum approximation:

∂v

∂t
= Δv − v (v − a) (v − 1) . (16.5)

Where Δ is the laplacian operator. A traveling-wave analysis allows us to
express the traveling wave profile, considering initial conditions ξ0 and ξ=n-ut,
and its velocity u:

v (ξ) =
1
2

[
1± tanh

[
ξ − ξ0√

8aD

]]
. (16.6)
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u = ± (1− 2a)

√
D

a
. (16.7)

In equation (6), one can notice the inverse relation between D and the
width of the wavefront that remains true even in a discrete system. Equation
(7) highlights the importance of the parameter a value compared to 1/2 and
that the velocity increases when a decreases. The ± symbol in equation (7)
corresponds to the bidirectional propagation. These remarks stay qualitatively
valid in the discrete case.

Moreover, a major feature due to discreteness is the failure of the propa-
gation when Dis smaller that a critical non-zero value D*¿0, which is missed
in the continuum approximation. In this case, the wavefront is pinned [5, 6].
From [6], an asymptotic expression of this parameter when a→0, is

D∗ =
1
4
a2 . (16.8)

Circular Waves.

Circular waves emerge from a circular or almost circular marker or from a
marker containing a circular symmetry as illustrated in figure 2.

Fig. 16.2. A) A circular wavefront propagation using a greyscale representation
where white corresponds to v = 1 and black v = 0. The top left inset shows the
marker. The other insets illustrate the propagating wavefronts at different times
in a.u. (arbitrary units). B) Propagation velocity versus the diffusive parameter
D. Numerical results comparison between planar wave speed (continuous line) and
circular wave speed (dot line). Parameter a = 0.1.

The spatial shape determines the velocity of the wavefronts, so that, in a
continuous system [7], a convex traveling wave propagates slower than a planar
one. This comportment is verified as it can be seen in the comparison between
planar wave speed and circular wave speed when D increases (Fig. 2). When
D decreases, the circular propagation is replaced by a multi-planar propaga-
tion with different wave vectors as the wavefront width becomes smaller and
is confronted to the discreteness of the system. That is to say that for, a small
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value of D, planar and circular wavefronts are merged. In addition, propaga-
tion fails for the same value D∗ of D. From now on, we will assume that D∗
is not a function of the kind of traveling waves, but only determined by the
threshold parameter a.

16.2.2 Inhomogeneous Grid Case

Contrary to the homogeneous grid case, the point of interest is the blocking
case. Indeed, it allows the control of the path of the topological traveling
wave. An image is then defined as a discrete bi-dimensional grid where nodes
correspond to pixels sites. Each node is coupled to its nearest neighbors in
a diffusive manner weighted by the local intrinsic information of the image.
The main idea is to initiate a wavefront and let it propagate until it reaches
an object Θ to be detected. In order to prevent further propagation, we now
impose the following rule:

Dn,m =
{
Dp > D∗ if (n,m) /∈ Θ
0 otherwise

. (16.9)

I.e. the wavefront cannot propagate in the object (D=0) and is limited to
the borders of Θ. Contrariwise, the propagation is possible since the marker
(or a part of the marker) is outside the object (Dp>D* ) (Fig. 3-A). The rela-
tionship between the diffusive parameter D, the width W and the thickness T
of the corridor has been studied and is presented in Fig. 3-C. A critical value,
Dm, of the diffusive parameter leads to a no propagation of the wavefront
(Fig. 3-B). Obviously, the larger and thicker the corridor is, the wider a prop-
agating wave can be, therefore, Dm increases. As discussed in the following
section, this property can be interesting to integrate objects or to develop
active curves.

16.2.3 A Generic Image Processing Method

Let A and B denote sets or indicate sets functions or even grayscale image
quantities as scalar-type results of some image processing (for example, linear
filtering). A and B can derive from the same image or from different images.
Here A represents binary marker from which a propagation phenomenon starts
from, and B a topological constraint derived from the image. The couple of
scalar discrete functions (A,B) defines the following equation:

Eε(A,B) :

⎧⎪⎪⎨⎪⎪⎩
dvn,m

dt = D(B)
ε (vn−1,m + vn+1,m + vn,m−1 + vn,m+1

−4vn,m)− fa(vn,m)
with fa(v) = v(a− v)(1− v) for a < 1

2 ,

D(B) = 1+tanh(20B−12)
2 , and v|t=0 = A

⎫⎪⎪⎬⎪⎪⎭ .

(16.10)
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Fig. 16.3. A) Propagation of a wavefront in an inhomogeneous grid. Inset (a)
shows the initial marker and an object Θ. Inset (b) shows the wave front crossing
the corridor separating the two parts of Θ at t = 100 a.u.. Inset (c) shows the
propagation of a circular wave emerging from the corridor at t = 200 a.u.. Inset
(d) shows the final stationary state, obtained at t = 300 a.u.. B) Unsuccessful
propagating wave (D = 1.2) C) Diffusive parameter D versus width W; curves for
different values of thickness T of Θ. When D is above this curve, the wavefront is
pinned. When D is beneath this curve, the wavefront can cross the corridor and
propagate. Parameters: a = 0.1, D = 1, W=6 nodes, T=4 nodes.

With a = 0.1 and the definition domain Ω being the (n,m)-length grid.
The system is completed by the Neumann conditions. A marker-rule is set so
that the marker remains constant and equal to 1. This choice of constructing
D(B) corresponds to a bimodal distribution of the local diffusive parameter
separated by D∗, allowing the control of the propagating paths. The propaga-
tion phenomenon defined by E tends to a convergence state noted v∞ε (A,B),
theoretically corresponding to infinite t but practically a millisecond value
will be sufficient in most cases. Then, let us define the main image processing
operator as:

φe,h(A,B) = {v∞e (A,B) ≥ h}. (16.11)

The propagation phenomenon is similar to the geodesic propagation, but
with an additive scale of regularity constraint, defined by the couple variables
(ε,h) with ε defining the magnitude order of the scale of regularity of the one-
pass propagation and h a thresholding along the scale regularity consequently
to the choice of ε in the final result when the propagation is definitively blocked
by the topological constraint. It is equivalent to fix ε and deduce h or to fix
hand deduce ε. Eq. (11) leads to the immediate following properties:

When ε −→1+/D*, Φε,h(A,B) tends to the geodesic reconstruction of
Bmarked by A.

Φε,h(., B) is increasing with fixed regularity scale parameters and increas-
ing with its two regularity scale parameters increasing independently.

Φε,h(A, .) is decreasing with fixed regularity scale parameters and decreas-
ing with its two regularity scale parameters increasing independently.

It allows the generation of many morphological-type analysis techniques,
constructed as classic techniques through the morphological theory, but with
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some advantages from the point of view of active curves (considering the
evolving front) or regions (considering the interior of the evolving curve) as
their greater regularity, without the topological problems of the deformable
templates. As illustrated by the experimental study, ε plays the rule of a
main geometric scale parameter andha secondary geometric scale parameter.
The > sign produces an active geodesic region approach, < producing a dual
region approach, whilst replacing it by = produces an active geodesic curve
approach. For the following paragraph, crepresents 1/ε.

One of the main advantages that has not been illustrated is the one-pass
multi-scale approximation. Considering the shape of figure 4, the propagation
of the traveling wave has a comportment of viscous gauge (Fig. 4). Analyzing
the grayscale resulting image gives us a set of multi-scale representations of the
original shape (Fig. 5). Low thresholds give higher details and high thresholds
furnish higher approximation of the shape. At limit of the domain of the image,
i.e. in our case [0, 1], we obtain almost the initial shape for low threshold (∼0)
and approximation hulls for high threshold (∼1).

Fig. 16.4. Scale aspect: Hull effect (with inner and outer markers). Left: final state.
Right: Shape and marker. Parameter c = 8.

Fig. 16.5. Secondary geometrical scale aspect of h. From left to right, then top to
bottom, h increases in a ratio-2 geometrical manner from h = 0.0078 to h = 0.996.
Parameter: c = 8.

The figure 6 illustrates the effect of blockage depending on c. The more
c increases, the less propagation penetrates in the porous medium. It works
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as if the propagation becomes more viscous. It could be interpreted as if each
elementary part of the propagation front was blocked by a virtual dilation
whose size is determined by the scale c. Therefore, ccan also be denoted as
the “scale of observation”. This phenomenon is useful for noised circles centre
determination.

Fig. 16.6. Scale aspect of c: Porosity effect (up: shape and marker, down: propa-
gation blockage for increasing values of c from left to right and up to bottom: c =
0.1 to c = 1.75 by incremental steps of 0.15)

16.3 Applications to Circles

16.3.1 Samples

A valuable application of these concepts is the measurement of circles, espe-
cially distorted ones. Indeed, an active contours approach of a distorted circle
can lead to the obtainment of a more circular form (Fig. 7). So we consider
a test set produced by modeling a certain variety of perfect and imperfect
discrete circles. Circles coordinates are described by:

{x = E [x0 + r cos (θ)] , y = E [y0 + r sin (θ)]} . (16.12)

E[x] being the nearest integer of x.
Noise and distortion can be added to those circles by modifying the radius:{

r −→ r −Anoise
r −→ r − adistortion

}
. (16.13)

with Anoise a random variable of centered Gaussian density of probability
and adistortion= a|sin(θ)sin(αθ)exp(-β (θ + π)4)|, a, α and β representing
parameters of this deformation.

With varying values of x0, y0 and r, we obtain a statistically significant
set of test images to distinguish our measurement tools. Typically, noise and
distortion amplitude are respectively set to 5 and 10 (Fig. 8). The relative
scale unit is the pixel one.
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Fig. 16.7. Left: initial image and final active contours image, Right: several thresh-
olds of the final active contours image (i.e. several views at different scale)

Fig. 16.8. Left: noised circle, Middle: distorted circle, Right: noised and distorted
circle

16.3.2 Radon Based Method

The main idea of the method is to describe a circle by its tangents to access to
circle radii. Indeed, three tangents i.e. three points are sufficient to compute
circle characteristics and only two if we consider parallel tangents. The au-
thors’ approach is to compute radii from those tangents and determine circle
center by their intersection. Considering a discrete framework, each arc of the
circle can be considered as a segment at a certain scale. Thereby, a discrete
tangent can pass through one and, generally, several pixels.

That is why the authors use the Radon transform to find tangents [8].
As the Radon transform converts an image (x,y) into a new domain (ρ,θ), it
is obvious to isolate the lines which include the most of pixels because they
correspond to maxima in the upper and lower parts of the signal. Although
these lines do not always correspond to tangents, they are even so neighboring.
In the continuation, these lines are considered as circle tangents.

The first step is to find each couple of tangents at the discrete angle θi
(θi ∈ [0, pi[). To that end, the Radon transform is separated into two parts at
the level of the barycenter for all discrete angles to obtain the upper and lower
parts of the original signal. This allows to correctly identify each maximum
in each part of the signal.

Once these maxima found, radii can be computed by considering the mean
of the parameter ρ of the tangents for each θi in the Radon domain. For sim-
plification purpose, the value of that point is set to the mean of maxima. To
enhance results, a fitting is done on data considering the parametric represen-
tation of an image point, here the circle center, in Radon domain.

The authors use a trust region algorithm[9] for nonlinear least mean
squares. To improve the fitting, it is necessary to suppress unlikely points
that imply a loss of precision when noise or distortion is added. The imple-
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mented method is an iterative α.σ method where α decreases along iteration.
In order to have the radius of the circle, a mean of the distance between each
tangent is done.

16.3.3 Results

To have a point of comparison, the authors use a classic least-mean squares
(LMS) method for circles [10]. Results are presented in the tables 1 and 2. Both
methods have been applied on initial simulated circles, then on edge of several
threshold (i.e. several scale) of the active contours results. The first conclusion
is that the RB estimator is not adapted for perfect or noised circles. It only
takes its interest in the case it is made for, that is to say the distorted circles.
One can see that the active contours method does not significantly affected
the precision of least mean square estimator. In the same way, even if an
increase of precision is visible, it is only significant for distorted circles as heavy
distortions are compensated. The difference of precision reaches nearly 1.5
pixel in distorted cases and nearly 0.84 pixel in noised and distorted cases in
favor of RB estimator with a threshold of 128 and eight or the nine iterations.

Table 16.1. Mean error of the least mean squares method

Table 16.2. Mean error of the Radon based method

16.4 Conclusion

This paper has contributed a new approach for problems of circles measure-
ment in a heavy distorted context. It consists on an active region algorithm
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that is able to furnish a multi-leveled image of a contour in a single pass
combined with a Radon transform based estimator. Levels are defined by a
granularity parameter that allows to focus on a particular scale. A more cir-
cular form can be obtained at a larger scale even if an error on the diameter
is introduced. The circle estimator, resting on an approach of the circle by its
tangents, furnishes a subpixel approximation of the center thanks to a fitting
in the Radon parameter domain. Results, compared to various classic meth-
ods, show the adequacy of a pre-processing by a propagation of wavefronts
combined with a tangential approach for measurement on distorted circles.
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Summary. This chapter describes an automated technique for detecting the eigh-
teen most important facial feature points using a statistically developed anthropo-
metric face model. Most of the important facial feature points are located just about
the area of mouth, nose, eyes and eyebrows. After carefully observing the structural
symmetry of human face and performing necessary anthropometric measurements,
we have been able to construct a model that can be used in isolating the above
mentioned facial feature regions. In the proposed model, distance between the two
eye centers serves as the principal parameter of measurement for locating the cen-
ters of other facial feature regions. Hence, our method works by detecting the two
eye centers in every possible situation of eyes and isolating each of the facial feature
regions using the proposed anthropometric face model . Combinations of differnt im-
age processing techniques are then applied within the localized regions for detecting
the eighteen most important facial feature points. Experimental result shows that
the developed system can detect the eighteen feature points successfully in 90.44%
cases when applied over the test databases.

17.1 Introduction

Identification of facial feature points plays an important role in many facial
image applications including human computer interaction, video surveillance,
face detection, face recognition, facial expression classification, face modeling
and face animation. A large number of approaches have already been at-
tempted towards addressing this problem, but complexities added by circum-
stances like inter-personal variation (i.e. gender, race), intra-personal changes
(i.e. pose, expression) and inconsistency of acquisition conditions (i.e. light-
ing, image resolution) have made the task quite difficult and challenging. All
the works that have addressed the problem of facial feature point detection so
far can be grouped into several categories on the basis of their inherent tech-
niques. Geometrical shape of facial features has been adopted in several works
for facial feature point localization and detection [1][2]. Each feature is demon-
strated as a geometrical shape; for example, the shape of the eyeball is circle
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and the shape of the eyelid is ellipse. This method can detect facial features
very well in neutral faces, but fails to show better performance in handling
the large variation in face images occurred due to pose and expression [3]. To
overcome this limitation, a variation of shape-based approaches that looks for
specific shape in the image adopting deformable and non deformable template
matching [4],[5], graph matching [6], snakes [7] or the Hough Transformation
[8] has also been deployed. Due to the inherent difficulties of detecting facial
feature points using only a single image, spatio-temporal information cap-
tured from subsequent frames of video sequence has been used in some other
work for detection and tracking facial feature points [9][10]. Combination of
color information from each of the facial features has been extracted and used
to detect the feature points in some other works [11][12]. One of the main
drawbacks of the color based algorithms is that they are applicable only to
the color images and can’t be used with the gray scale images. Approaches of
facial feature points detection using the machine learning techniques like Prin-
ciple Component Analysis [13], Neural Network [3], Genetic Algorithm [14]
and Haar wavelet feature based Adaboost classifiers [15] require a large num-
ber of face images and computational time for initial training. There are also
some works that have used image intensity as the most important parameter
for detection and localization of facial features [16][17].

Although anthropometric measurement of face provides useful information
about the location of facial features, it has rarely been used in their detection
and localization. In this chapter, we have explored the approach of using a sta-
tistically developed, reusable anthropometric face model for localization of the
facial feature regions as well as for detection of the eighteen most important
facial feature points from these isolated regions using a hybrid image process-
ing technique. The subsequent discussion of this chapter has been organized
into the following sections: Section 2 explains the proposed anthropometric
face model, Section 3 focuses on the isolation of facial feature regions using the
anthropometric face model, Section 4 explains the techniques of detecting the
eighteen feature points from the identified face regions, experimental results
are represented in Section 5 and finally Section 6 concludes the paper.

17.2 Anthropometric Model for Facial Feature Region
Localization

Anthropometry is a biological science that deals with the measurement of
the human body and its different parts. Data obtained from anthropometric
measurement informs a range of enterprises that depend on knowledge of
the distribution of measurements across human populations. After carefully
performing anthropometric measurement on 300 frontal face images taken
from more than 150 subjects originated in different geographical territories,
we have been able to build an anthropometric model of human face that can
be used in localizing facial feature regions from face images [18]. Rather than
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using all the landmarks used by Farkas [19], we have used only a small subset
of points and have added some new landmarks in our model. The landmark
points that have been used in our proposed anthropometric face model for
facial feature localization are represented in Fig. 17.1(a). It has been observed
from the statistics of proportion evolved during our initial observation that,
location of these points (P3, P4, P6, P7) can be obtained from the distance
between the two eye centers (P1 and P2) using the midpoint of the eyes (P5) as
an intermediate point since distances between the pair of points (P1 and P3),
(P2 and P4), (P5 and P6), (P5 and P7) maintain nearly constant proportions
with the distance between the centers of the left and right eyes (P1 and P2).
Our proposed anthropometric face model of facial feature region localization
has been developed from these proportional constants (Table 17.1) using the
distance between the centers of the left and right eyes (P1 and P2) as the
principle parameter of measurement.

Fig. 17.1. Proposed Anthropometric Face Model for facial feature region localiza-
tion (a) Landmarks used in our Anthropometric Face Model (b) Distances (Anthro-
pometric Measurements).

17.3 Identification of the Facial Feature Regions

Since distance between the two eye centers serves as the principal parameter
for measuring the center locations of other facial feature regions, implementa-
tion of the proposed automated facial feature point detection system begins
with the detection of two the eye centers using the generative framework
for object detection and classification proposed in [20]. This method has been
able to point out the eye centers correctly almost in 99% cases for our dataset.
Once the right and left eye centers (P1 and P2) are detected, we step forward
for measuring the rotation angle of the face in a face image over the horizon-
tal axis (x-axis). For this purpose, we have imagined a right angled triangle
formed with the right eye center (x1, y1), left eye center (x2, y2) and the third
point that serves as the crossing point of the horizontal and vertical lines
passing through the right and left eye centers respectively (Fig. 17.2).
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Table 17.1. Proportion of the distances (D2, D3, D4, and D5) to D1 measured from
the subjects of different geographical territories

Proportion Description Constant

D2/D1 Proportion of the distance between right eye center and � 0.33
right eyebrow center to the distance between eye centers

D3/D1 Proportion of the distance between left eye center and left � 0.33
eyebrow center to the distance between eye centers

D4/D1 Proportion of the distance between midpoint of eye centers � 0.60
and nose tip to the distance between eye centers

D5/D1 Proportion of the distance between midpoint of eye centers � 1.10
and mouth center to the distance between eye centers

Fig. 17.2. Horizontal rotation (rotation over x-axis) of the face in a face image is
corrected by determining the rotation angle. Coordinate values of the eye centers
are used to calculate the amount of rotation to be performed.

The amount of horizontal rotation of the face, θ is then determined using
the following equation:

θ = tan−1
( |y1 − y2|
x2 − x1

)
For fitting the face with our model, the whole image is then rotated by the
angle θ. The direction of the rotation (clock-wise or counter clock-wise) is
determined by the polarity of difference (y1 - y2). If the difference is positive,
the image is rotated in clock-wise direction, otherwise it is rotated to counter
clock-wise direction. The new location of the right eye center (x1, y1) and left
eye center (x2, y2) are then updated by detecting them once again over the
rotated face image. Once the face is aligned to fit with our anthropometric
model, the system works for detecting the centers of facial feature regions
(P3, P4, P6, P7). This process begins with the detection of the midpoint
of the two eye centers (P5) that serves as the reference point for detecting
P6 and P7, and the distance D1 that is used as the principal parameter for
measuring the location of other facial feature regions. Locations of the points
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P3, P4, P6, P7 are then identified by calculating the distances D2, D3, D4, and
D5 respectively Fig. 17.1(b) using the proportionality constants proposed by
our anthropometric face model (Table 17.1). Rectangular bounding boxes for
confining the facial feature regions are then approximated using the distance
between the two eye centers as the measurement criteria.

17.4 Facial Feature Point Detection

Searching for the eighteen facial feature points is done separately within each
of the areas returned by the facial feature region identifier. Steps for the
searching process are described below:

17.4.1 Feature Point Detection from the Eye Region

The eye region is composed of the dark upper eyelid with eyelash, lower eyelid,
pupil, bright sclera and the skin region that surrounds the eye. The most
continuous and the non deformable part of the eye region is the upper eyelid,
because both pupil and sclera change their shape with the various possible
situations of eyes, especially when the eye is closed or partially closed. So,
inner and outer corner are determined first by analyzing the shape of the
upper eyelid.

Fig. 17.3. Detection of the feature points from the eye region. (a) Eye region (b)
Intensity adjustment (c) Binarized eye region (d) Detected eye contour (e) Detected
inner and outer eye corners (f) Detected midpoints of the upper and lower eyelids.

To avoid the erroneous detection, discontinuity of the upper eyelid must
be avoided. This can be done by changing the illumination of the upper eyelid
in such a way that it differs significantly from its surrounding region. Here,
this has been carried out by saturating the intensity values of all the pixels
towards zero that constitutes the lower 50% of the image intensity cumulative
distribution and forcing the rest of pixels to be saturated towards one Fig.
17.3(b). The adjusted image is then converted to binary one Fig. 17.3(c) using
the threshold obtained from the following iterative procedure [21]:
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1. Pick an initial threshold value, t.
2. Calculate the two mean intensity values (m1 and m2) from the histogram

using the intensity values of the pixels that lie below and above the thresh-
old t.

3. Calculate the new threshold tnew = (m1 + m2)/2.
4. If the threshold is stabilized (t=tnew), this is the appropriate threshold

level. Otherwise, t becomes tnew and re-iterate from step 2.

Contour that covers the largest area Fig. 17.3(d) is then isolated using
the 8-connected chain code based contour following algorithm specified in
[22]. For the right eye, the inner eye corner is the rightmost point of the
contour and outer eye corner is the leftmost one. For left eye, rightmost point
over the contour becomes the outer corner and leftmost point is the inner
corner. The whole eye contour is then divided vertically into three equal parts
and searching for the upper and lower mid eyelid is then done within the
middle portion. For each value of x-coordinate {x1, x2, ..., xn} that falls within
this middle portion, there will be two values of y-coordinate; one from the
upper portion of the eye contour {y11, y12, ..., y1n} and another from the lower
portion of the eye contour {y21, y22, ..., y2n}. Distance between each pair of
points {(xi, y1i), (xi, y2i)} is then calculated. The maximum of the distances
calculated from these two sets points and that lies closest to the midpoint
of inner and outer eye corner is considered as the amount of eye opening.
Mid upper eyelid and mid lower eyelid are simply the points that forms the
maximum distance.

17.4.2 Eyebrow Corner Detection

Aside from the dark colored eyebrow, eyebrow image region also contains rela-
tively bright skin portion. Since dark pixels are considered as the background
in digital imaging technology, the original image is complemented to convert
the eyebrow region as the foreground object and rest as the background Fig.
17.4(b). A morphological image opening operation is then performed over the
complemented image with a disk shaped structuring element of ten pixel ra-
dius for obtaining the background illumination Fig. 17.4 (c). The estimated
background is then subtracted from the complemented image to get a brighter
eyebrow over a uniform dark background Fig. 17.4(d). Intensity of the resul-
tant image is then adjusted on the basis of the pixels’ cumulative distribution
to increase the discrimination between the foreground and background Fig.
17.4(e). We have then obtained the binary version of this adjusted image
Fig. 17.4(f) by thresholding it using the Otsu’s method [23] and all the avail-
able contours of the binary image are detected using the 8-connected chain
code based contour following algorithm specified in [22]. The eyebrow con-
tour, which is usually the largest one, is then identified by calculating the
area covered by each contour Fig. 17.4(g). For the left eyebrow, the point
on the contour having the minimum values along the x and y coordinates
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simultaneously, is considered as the inner eyebrow corner. Again, the point
which has the maximum values along both the x and y co-ordinates at the
same time, is considered as the outer eyebrow corner Fig. 17.4(h). Similar,
but reverse procedure is applied over the right eyebrow for detecting its inner
and the outer corner.

Fig. 17.4. Eyebrow corners detection (a) Eyebrow region (b) Complemented eye-
brow image (c) Estimated background (d) Background Subtraction (e) Intensity
adjustment (f) Binary eyebrow region (g) Eyebrow contour (h) detected eyebrow
corners.

17.4.3 Detection of the Nostrils

The nostrils of the the nose region are two circular or parabolic objects having
the darkest intensity level Fig. 17.6(a). For detecting the centre points of
nostrils, separation of this dark part from the nose region has been performed
by filtering it using Laplacian of Gaussian (LoG) as the filter. The 2-D LoG
function centered on zero and with Gaussian standard deviation σ has the
form [24]:

LoG(x, y) = − 1
πσ4

[
1− x2 + y2

2σ2

]
e
−
(

x2+y2

2σ2

)
Benefits of using the LoG filter is that the size of the kernel used for the pur-
pose of filtering is usually much smaller than the image, and thus requires far
fewer arithmetic operations. The kernel can also be pre-calculated in advance
and so, only one convolution is needed to be performed at run-time over the
image. Visualization of a 2-D Laplacian of Gaussian function centered on zero
and with Gaussian standard deviation σ = 2 is provided in Fig. 17.5.

The LoG operator calculates the second spatial derivative of an image. This
means that in areas where the image has a constant intensity (i.e. where the
intensity gradient is zero), the LoG response will be zero [25]. In the vicinity
of a change in intensity, however, the LoG response will be positive on the
darker side, and negative on the lighter side. This means that at a reasonably
sharp edge between two regions of uniform but different intensities, the LoG
response will be zero at a long distance from the edge as well as positive
just to the one side of the edge, and negative to the other side. As a result,
intensity of the filtered binary image gets complemented and changes the
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Fig. 17.5. The inverted 2-D Laplacian of Gaussian (LoG) function. The x and y
axes are marked with standard deviation (σ = 2).

nostrils as the brightest part of the image Fig. 17.6(b). Searching for the local
maximal peak is then performed on the filtered image to obtain the centre
points of the nostrils. To make the nostril detection technique independent of
the image size, the whole process is repeated varying the filter size starting
from ten pixel until the number of peaks of local maxima is reduced to two
Fig. 17.6(c). Midpoints of the nostrils are then calculated by averaging the
coordinate values of the identified nostrils Fig. 17.6(d).

Fig. 17.6. Nostril detection from isolated nose region (a) Nose region (b) Nose
region filtered by Laplacian of Gaussian filter (c) Detected nostrils.

17.4.4 Feature Point Detection from the Mouth Region

The simplest case of detecting the feature points from the mouth region occurs
when it is normally closed. However, complexities are added to this process
by situations like when mouth is wide open or teeth are visible between upper
and lower lips due to laughter or any other expression. These two situations
provides additional dark and bright region(s) respectively in the mouth con-
tour and makes the feature point detection process quite complex. To handle
these problems, contrast stretching on the basis of the cumulative distribution
of the pixels is performed over the mouth image for saturating the upper half
fraction of the image pixels towards higher intensity value. As a result, lips and
other darker regions become darker while the skin region becomes compara-
tively brighter providing a clear separation boundary between the foreground
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and background Fig. 17.7(b). A flood-fill operation is then performed over the
complemented image to fill-up the wholes of the mouth region Fig. 17.7(d).
After this, the resultant image is converted to its binary version using the
threshold value obtained by the iterative procedure described in [21]. All the
contours are then identified applying the 8-connected chain code based con-
tour following algorithm specified in [22] and the mouth contour is isolated
as the contour having the largest physical area Fig. 17.7(f). The right mouth
corner is then identified as a point over the mouth contour having the mini-
mum x coordinate value, and the point which has the maximum x coordinate
value is considered as the left mouth corner. Middle point (xmid, ymid ) of
the left and right mouth corner are then calculated and upper and lower mid
points of mouth are obtained by finding the two specific points over the mouth
contour which has the same x coordinate value as that of (xmid, ymid) but the
minimum and maximum value of the y coordinate respectively.

Fig. 17.7. Feature point detection from mouth region (a) isolated mouth region
(b) intensity adjustment (c) complemented mouth region (d) filled image (e) binary
mouth region (f) detected mouth contour (g) detected feature points from mouth
region.

17.5 Experimental Results

For measuring the performance of the proposed system, we have tested it on
three different publicly available face image databases namely, Caltech Face
Database [26], BioID Face Database [27], and Japanese Female Facial Ex-
pression (JAFFE) Database [28]. The Caltech frontal face image database
consists of 450 face images taken from 27 unique people under different light-
ing, expressions and backgrounds. The BioID Face Database consists of 1521
gray level images each with a resolution of 384 × 286 pixels. Each image in
the database shows the frontal face view of one out of the 23 different test
persons. The JAFFE database contains 213 images each representing seven
different facial expressions (6 basic facial expressions + 1 neutral) posed by
ten Japanese female models. Accuracy of our automated facial feature point
detector in detecting the eighteen facial feature points over these databases
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has been summarized in Table 17.2. As the result indicates, our feature detec-
tor performs satisfactorily both for the neutral face images as well as for the
face images having various expressions. On an average, we have been able to
detect each of the eighteen feature points with a success rate of 90.44% using
the proposed method.

Table 17.2. Detection Accuracy (percentage) of the Proposed Automated Facial
Feature Point Detection System.

Feature Point Caltech Face BioID Face JAFFE Average

Database Database Database Accuracy

Right Eyebrow Inner Corner 95.41 94.16 98.57 96.05
Right Eyebrow Outer Corner 87.36 90.42 92.17 89.98
Left Eyebrow Inner Corner 96.20 93.52 96.38 95.37
Left Eyebrow Outer Corner 88.40 86.26 90.35 88.34
Right Eye Inner Corner 93.12 90.83 94.70 92.88
Right Eye Outer Corner 85.34 87.92 89.62 87.63
Midpoint of Right Upper Eyelid 84.49 86.71 88.40 86.53
Midpoint of Right Lower Eyelid 83.60 85.38 86.73 85.24
Left Eye Inner Corner 95.11 92.64 92.83 93.53
Left Eye Outer Corner 86.69 90.76 91.46 89.64
Midpoint of Left Upper Eyelid 85.77 88.26 89.61 87.88
Midpoint of Left Lower Eyelid 84.22 87.69 88.98 86.96
Right Nostril 97.23 93.19 98.34 96.25
Left Nostril 96.95 91.88 97.21 95.35
Right Mouth Corner 92.79 87.40 95.32 91.84
Left Mouth Corner 94.10 92.45 97.89 94.81
Midpoint of Upper Lip 85.73 83.91 91.20 86.95
Midpoint of Lower Lip 79.31 82.33 86.28 82.64

17.6 Conclusion

We have presented a completely automated technique for detecting the eigh-
teen facial feature points where localization of the facial feature regions has
been performed using an statistically developed anthropometric face model
[18]. One of the important features of our system is that rather than just
locating each of the feature regions, it identifies the specific eighteen feature
points from these regions. Our system has been tested over three different
face image databases and on an average, it has been able to detect each of
the eighteen facial feature points with a success rate of 90.44%. The proposed
technique is independent of the scale of the face image and performs satisfac-
torily even at the presence of the seven basic emotional expressions. Since the
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system can correct the horizontal rotation of face over x-axis, it works quite
accurately in case of horizontal rotation of the face. However the system has
limitation in handling the vertical rotation of face over y-axis and can perform
satisfactorily only when the vertical rotation is less then 25 degree. Use of the
anthropometric face model [18] in the localization of facial feature regions has
also reduced the computational time of the proposed method by avoiding the
image processing part which is usually required for detecting facial feature
regions from a face image. As the distance between the centers of two eyes
serves as the principal measuring parameter for facial feature regions localiza-
tion, improvement in eye center detection technique can also further improve
the performance of the whole automated facial feature point detection system.
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Summary. Palmprint technology is one of the biometric techniques used to identify
an individual. Recognition of palmprints is based on the features like palm lines,
texture, ridges etc. Several line and texture extraction techniques have already been
proposed. In this paper we propose a novel technique, filiformity to extract the
line like features from the palm. We also extracted texture features using Gabor
filter from the palmprint image. Performance of the two techniques is determined
individually. A sum rule is applied to combine the features obtained from the two
techniques to develop an intramodal system. Fusion is applied at both feature level as
well as matching level for the authentication mechanism. Performances of the system
improved both in False Acceptance Rate (FAR) as well as Genuine Acceptance Rate
(GAR) aspects in the intramodal system.

Key words: Palmprint, Filiformity, Gabor filter, FAR, GAR, Intramodal

18.1 Introduction

Biometrics is considered to be one of the robust, reliable, efficient, user-friendly
secure mechanisms in the present automated world. Biometrics can provide se-
curity to a wide variety of applications including access to buildings, computer
systems, ATMs [1]. Fingerprints, Iris, Voice, Face, and Palmprints are some
of the different physiological characteristics used for identifying an individual.
A palm is the inner surface of the hand between the wrist and the fingers
[2]. Some of the features extracted from palms are principal lines, wrinkles,
ridges, singular points, texture and minutiae. Principal lines are the darker or
more prominent lines present on the palm. In general, three principal lines are
found on palms of most individuals, namely, heartline, headline and lifeline.
Wrinkles are the thinner lines concentrated all over the palm. A palmprint
image with principal lines and wrinkles represented is shown in Fig 1. How-
ever there are some difficulties and issues in extracting the line features from
palmprints [18-19]: 1. Line features cannot be extracted satisfactorily from
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images of low-resolution. 2. When we apply edge detection algorithms, fixing
an edge threshold is a major problem. Choosing a low threshold ensures that
we capture the weak yet meaningful edges in the image, but it may also re-
sult in an excessive number of ’false positives’. Too high a threshold, on the
other hand, will lead to excessive fragmentation of the chains of pixels that
represent significant contours in the image. So unless the threshold is fixed
properly lines will not be extracted accurately and an exact threshold needs
to be found from experimentation. 3. Lines on palms have varying widths.
Unless the filter size is set correctly lines will not be extracted with their orig-
inal width. 4. In case of gray level images, a line is generally darker than the
background on which it is drawn. Certain parts of lines can cross-zones that
are darker than they are. Extraction of such parts of a line is difficult.

In the literature different line extraction techniques were proposed, which
includes edge detection techniques and line tracing techniques. Wu et al [2]
used directional line detectors to extract the principal lines. Chih -Lung et
al. [9] used Sobel edge detection and performed directional decomposition.
Han et al., [4] used morphological operations to enhance the palm lines and
employed the magnitude of the image to compute the line like features. Wu.
et. al.[5] performed morphological operations to extract the palm lines explic-
itly and employed coarse to fine level strategy. Algorithms such as the stack
filter [10] are able to extract the principal lines. Principal lines provide a com-
monly accessible or intuitive means to match palms. However, these principal
lines by themselves may not be sufficient to uniquely identify an individual
through their palmprints because different people may have similar principal
lines on their palmprints [7]. To further identify a subject more precisely addi-
tional modalities are required. Ming-Cheung et. al. [17] proposed intramodel
and intermodel fusion for audio visual biometric authentication. Obviously
obtaining multi-modal biometric information about individuals is a difficult
proposition due to the fears of identity theft and the need to keep such infor-
mation secure. Therefore while multi-modal fusion might help in improving
specificity of recognition it may not always be advantageous. This leaves us
with the other alternative that is, intramodal fusion where the scores of mul-
tiple samples obtained from the same modality are combined to improve the
effectiveness of a biometric.

In this paper we bring in two methods for the palm biometric, and the
methods are extraction of lines features and that of extraction of palm tex-
ture features. Here we find a novel application of the filiformity [6] concept.
Filiformity technique can be used to extract lines even from low contrast im-
ages. To extract texture features we employ the Gabor filter technique [7].
Further the information from these are fused using two different fusion strate-
gies. The rest of the paper is organized as follows. Section 2 deals with the
image acquisition, preprocessing and segmentation. Section 3 deals with fil-
iformity technique of line extraction. Texture feature extraction is discussed
in Section 4. Section 5 presents the feature extraction technique and Section
6 determines the matching technique used. Experimental results are provided
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Fig. 18.1. Palmprint with principle lines and wrinkles

in Section 7. Information fusion is discussed in Section 8 and Section 9 gives
the conclusions.

18.2 Image acquisition, Pre Processing and
Segmentation

Any biometric recognition system has to undergo four stages like Image Ac-
quisition, Pre-Processing and Segmentation, Feature extraction and Matching.
The basic setup of the verification system is depicted in Fig 2. Palmprints of
an individual can be captured in different ways like inked image [3], scanned
images with pegged setup [7] and scanned images with peg free setup [4]. In
our paper we worked on scanned images with pegged setup as shown in Fig
3.

Fig. 18.2. Palmprint verification system block diagram

The palmprint obtained in image acquisition is processed to smoothen and
reduce the noise in the image. Adaptive median filter [8] is used to smoothen
the image before extracting the ROI and its features. The filter has the ad-
vantages of handling impulse noises of large spatial densities. An additional
benefit of the adaptive median filter is that it seeks to preserve detail while
smoothing non-impulse noise, something that the traditional filter does not
do. The images captured are to be segmented to extract the Region of In-
terest (ROI). The image is rotated 90 in clockwise direction as shown in Fig
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Fig. 18.3. Palmprint image captured

4. We followed the technique used by [9] to extract the square ROI from the
palmprint image captured. The starting point of the bottom line Ps is found
out by scanning the image from the bottom left most pixel. The boundary
pixels of the palm are traced and collected in a vector, namely Border Pixel
Vector as shown in Fig 4(a). The mid point of the bottom line Wm is found
out and a distance to all the border pixels from Wm is calculated. A distance
distribution diagram is plotted as shown in Fig 4(b). The local/minima in the
distance distribution diagram are found out, which are nothing but the fin-
ger web locations. A square region is extracted using the finger web locations
as shown in Fig 4(c). As the size of the square region differs from person to
person, we resized the ROI to 150x150 size

18.3 Filiformity

Salim Djeziri et al., [6] proposed a method that is based on the human vi-
sual perception, defining a topological criteria specific to hand written lines
which is called ’filiformity’. This method was proposed for the extraction of
signatures from bank check images. Filiformity is found from two step process.
The first step computes a response image where linear objects are detected. A
global threshold is applied on the response image to obtain the globally rele-
vant image objects. As far as our problem is concerned, we are only interested
in the lines present on the palmprint image. A line from filiformity concepts
is characterized by means of the following heuristic: A line is generally darker
than the background on which it is drawn. In our approach we use ring level
filiformity [6] because it is richer in terms of information and enables better
interpretation of the local shape of a line by an adequate choice of a mea-
surement function, while the surface measure translates an occupation rate
without taking into account the local shape of the line. We do not perform
global processing after the local values obtained because we are interested
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(a) (b)

(c)

Fig. 18.4. (a) Border pixels collected and Wm point is shown (b) Distance Distri-
bution diagram plotted for the distance between Wm and border pixels (c) Finger
Web locations Fw1, Fw2, Fw3 are found and a square region is extracted.

in all the lines present on the palm. Global Processing is performed to ex-
tract the lines whose pixels have the local measure more than the specified
preset threshold value. For every pixel on the palmprint image a degree of
perceptibility is computed. This measure is used to build the feature vector.
Filiformity technique is applied on the 150X150 size ROI and local measures
are obtained for each pixel. Fig 5 shows the ROI after the application of
filiformity technique.

18.4 Gabor filters for texture extraction

Palmprint have unique features like principal lines, wrinkles, and ridges. Prin-
cipal lines extracted from the palmprint may not be sufficient to represent
uniqueness of the individual, because of the similarity of the principal lines
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Fig. 18.5. ROI after the application of filiformity

of different person’s palms [7]. So to improve the uniqueness and make the
feature vector much robust, we tried to extract the texture features from the
images. These texture features not only include principal lines but also include
wrinkles, ridges. We have used Gabor filter to extract the texture features.
These Gabor filters already have been used to extract the features from fin-
gerprint, iris recognition [11], and palmprint recognition [7] [12]. Gabor filters
extracts the texture features by capturing the frequency and orientation infor-
mation from the images. The 2-D Gabor filters used for palmprint verification
in spatial coordinates are defined as

G(x, y, θ, u, σ) = (
1

2Πσ2
) ∗ exp(−x2 + y2

2Πσ2
) ∗ exp(2 ∗ π ∗ i ∗ u(x cos θ + y sin θ))

(18.1)
Where ’x’ and ’y’ are the coordinates of the filter, ’u’ is the frequency of the
sinusoidal wave,′σ′ is the Gaussian envelope, ′θ′ is the orientation of the func-
tion and i=

√−1. Here, the optimized values for the Gabor filter parameters
such as u=0.0925 and σ=7.1 have chosen after testing with different values at
an orientation of 45.

Iθ(i, j) =
w∑
x=1

w∑
y=1

Gθ(x, y)I(i− x, j − y) (18.2)

where I is the input image, Iθ is the image at θ orientation, and w x w is the
size of the Gabor filter mask. Gabor filter is applied on 150x150 size ROI as
done in filiformity technique.

18.5 Building Feature Vectors from Palms

After extracting the reliable features from the palmprint image, we need to
build a feature vector to represent the individual. In our approach we divided
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the extracted ROI into ’n’ non-overlapping blocks and calculated the standard
deviation of the local values obtained in both the cases of line and texture
extraction. A feature vector of size 1x n is established with the computed
standard deviation values. FV=[SD (1), SD (2), .SD (n)] where FV is the
feature vector SD (j) is the standard deviation of the jth block.

18.6 Matching

Matching algorithm determines the similarity between two given data sets.
Applying the matching algorithm on the input palmprint image and image
existing in the database does palmprint verification. The palmprint is said
to be authentic if the result obtained after matching is more than the preset
threshold value. In our approach we employed Pearson Correlation Coefficient
to find the similarity between two palmprint images. The linear or Pearson
correlation coefficient is the most widely used measurement of association
between two vectors. Let x and y be n-component vectors for which we want
to calculate the degree of association. For pairs of quantities (xi, yi), i=1,,n
the linear correlation coefficient r is given by the formula:

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(18.3)

where x is the mean of the vector x, y is the mean of the vector y. The
value r lies between -1 and 1, inclusive, with 1 meaning that the two series
are identical, 0 meaning they are completely independent, and -1 meaning
they are perfect opposites. The correlation coefficient is invariant under scalar
transformation of the data (adding, subtracting or multiplying the vectors
with a constant factor).

18.7 Experimental Results

We experimented our approach on Hong Kong PolyTechnic University Palm-
print database [13]. A total of 600 images are collected from 100 different
persons. Images are of 384x284 size taken at 75dpi resolution. The images,
which are segmented to ROI, are resized to 150x150 size so that all the palm-
prints are of same size. We applied filiformity as well as Gabor filters on
the ROI independently. The resultant image is then segmented into 36 non-
overlapping square blocks as shown in Fig.6. Standard deviation of the values
obtained is computed for each block and a feature vector of size 1x36 is built
for both the cases. The feature vectors for the six images of a person are stored
in the database for his identity. FAR and GAR rates are calculated for both
the cases to evaluate the performance of the system [14]. A table is built for
each person in the database as shown in Table1 and Table 2. Table1 repre-
sents the correlation values of the different images that belong to the same
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person, which is calculated using filiformity method. Table 2 represents the
correlation values of the different images that belong to the same person and
is calculated using Gabor filters. The database is tested for different threshold
values to calculate the GAR. A person is said to be genuine if at least one
value in the table is above the threshold. FAR is calculated by matching each
image of a person with all the images of the remaining persons in the database
and the results are given for different threshold values. Table 3 and Table 4
presents the GAR and FAR at different threshold values for Filiformity and
Gabor filter techniques respectively. Correlation between same images always
yields a matching score of one. Using filiformity technique the FAR rates are

Fig. 18.6. ROI divided into 36 blocks

2 3 4 5 6
1 0.8792 0.8189 0.8412 0.8173 0.8485
2 0.8672 0.8277 0.8910 0.8007
3 0.8070 0.7543 0.7663
4 0.8583 0.9187
5 0.9028

Table 18.1. Matching scores for different images of a person computed using Fili-
formity technique

better than GAR rates, which implies that a genuine person may be denied
but an impostor is not allowed. In case of Gabor filter technique GAR rates
are better than FAR rates, which implies that a genuine person should not be
denied even though the impostor can be allowed.
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2 3 4 5 6
1 0.7202 0.7557 0.6333 0.6957 0.6152
2 0.6362 0.4547 0.6186 0.4894
3 0.7418 0.7757 0.8193
4 0.7623 0.7986
5 0.8418

Table 18.2. Matching scores for different images of a person computed using Gabor
filter

Threshold GAR FAR
0.84 100% 6.17
0.88 99% 1.54
0.89 98% 0.96
0.9 98% 0.57
0.92 93% 0.12

Table 18.3. GAR and FAR rates for different threshold values for Filiformity tech-
nique

Threshold GAR FAR
0.84 100% 0.22
0.88 96% 0.024
0.89 95% 0.011
0.9 89% 0.0033
0.92 74% 0

Table 18.4. GAR and FAR rates for different threshold values for Gabor filter
technique

18.8 Information Fusion

Fusion of the palmprint representations improves the performance of the ver-
ification system [15]. The representations can be combined at different levels:
at feature level, at score level, and at decision level. In this paper we com-
bined the representations using a sum rule at both feature level and score
level as shown in Fig.7 and Fig.8 respectively. According to the experiments
conducted by Arun Ross et al., [16] the sum rule performs better than the
decision tree and linear discriminant analysis. FAR and GAR rates are cal-
culated from the feature vectors obtained using fusion at feature level and
the results are shown in Table 5. We also performed fusion at matching level
by applying sum rule on the matching scores obtained from the two differ-
ent techniques and calculated GAR and FAR. Results are shown in Table 6.
By combining, the two techniques using fusion strategies the performance is
improved in both GAR as well as FAR cases.
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Threshold GAR (%) FAR(%)
0.8 100 0.318
0.81 98 0.218
0.82 96 0.142
0.83 96 0.085
0.84 95 0.050

Table 18.5. GAR and FAR rates at feature level fusion

Threshold GAR (%) FAR(%)
1.68 100 0.32
1.76 97 0.25
1.78 97 0.249
1.8 96 0.248
1.84 88 0.248

Table 18.6. GAR and FAR rates at matching level fusion

Fig. 18.7. Block diagram for feature level fusion

Fig. 18.8. Block Diagram for score level fusion

18.9 Conclusions

The objective of this work is to investigate the performance of the intramodal
palmprint system by extracting reliable features from the palmprint. We ex-
tracted line like features as well as texture features from the palmprint image.
Performance rates like GAR and FAR are calculated for each technique. In
case of filiformity technique the FAR rates are better than GAR rates, which
implies that a genuine person may be denied but an impostor is not allowed.
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In case of Gabor filter technique GAR rates are better than FAR rates, which
implies that a genuine person should not be denied even though the impostor
can be allowed. By combining, the two techniques using fusion strategies the
performance is improved in both GAR as well as FAR cases. While GAR is
increasing FAR is decreasing by the application of fusion strategy. This con-
cludes that using multiple features for a single biometric yields better results
when compared to using single feature.
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19.1 Introduction

In our fast evolving time, where society, information and communication
are getting closer together, the need for mobile communications is growing
quickyl. Mobile phones are no longer solely used for making telephone calls.
They can now take pictures, capture video, check e-mail and let the user
browse the internet. Most of these applications are pretty common nowadays;
on the video part however there’s still a long road ahead. The mobile opera-
tors are expanding their networks to make high-speed transmissions of such
data possible, however for the time being bandwidth remains a scarce good.

Because most networks deal with a limited amount of bandwidth, scaling
techniques are introduced to send less data over the network with as little
inconvenience as possible for the user. One of these techniques is Region-Of-
Interest coding (ROI). ROI will divide an image into multiple parts, the most
important part being the one the user is observing, called the ROI.

The background will be sent in a lower quality than the ROI, or not sent
at all. This results in a lower bitrate and thus less bandwidth is required for
the encoded video. The ROI can be defined by the user by means of a mouse
click, by making use of an eye tracking device or can be predicted, based on
content recognition algorithms. In this chapter, we will discuss early ROI im-
plementations in H.264 and suggest our own solution for some of the problems
discovered previously. Firstly however, we will discuss the features of H.264
that enable ROI coding.

The remainder of this chapter will have the following outline: Section II
discusses the basic concepts related to H.264 and ROI coding. Section III
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describes our implementation of the ROI model. In section IV, we summarize
the tests performed. Finally, section V provides a summary.

19.2 Basic Concepts

19.2.1 H.264

The H.264 video codec, also known as MPEG-4 Part 10 /AVC (Advanced
Video Coding), has recently been standardized by MPEG [5] [6]. The original
H.264 standard includes 3 profiles (baseline, main and extended), each having
a different set of functionalities. The baseline profile is our main focus for
this research, since it was designed primarily for low-cost applications which
do not have a great amount of computational power. This profile is mainly
used in mobile applications. The most relevant functionalities in the baseline
profile are, Flexible Macroblock Ordering (FMO) and Arbitrary Slice Ordering
(ASO). Both techniques are used for manipulating the decoding order of the
macroblocks in the picture. This was implemented as an error robustness
feature, but FMO and ASO can also be used for other purposes such as
Region-Of-Interest.

Slices are a very important improvement in H.264. A video frame consists
of macroblocks which can be grouped into slices. A slice contains at least one
macroblock but can be extended to all the macroblocks in the video frame.
For the Baseline Profile only I (Intra)- and P (Predicted) slices can be used
and therefore only I- and P-macroblocks are supported (B-(Bidrectional), SI-
(Switching) and SP- (Switching P-)slices are not supported in the Baseline
Profile).

A slice group contains macroblocks of one or more slices. The macroblocks
in a slice group are coded sequentially. The standard includes 7 modes to map
macroblocks to a slice group[6], but we only review the 3 types relevant for
our research:

• Foreground and background (Type 2) allows multiple rectangular
slice groups to be created. When all these slice groups are filled with the
corresponding macroblocks, the remaining macroblocks will be put in the
last slice group. Slice groups are defined by assigning the two parameters,
Top Left and Bottom Right, to the Macroblock (MB) numbers. When
two rectangles overlap, the slice group with the lowest number will have
priority and overlapping MB’s will be assigned to the lowest slice group.
A slice group can not exist in the following cases:
– One of the two defining parameters is not specified;
– Bottom Right is left or above Top Left;
– The slice group is completely covered by lower slice groups;

• Box-out (Type 3) means ’slice group 0’ starts in the center of the screen
and expands spirally as a square with a predefined size. All the macro-
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blocks, not contained by the box, are part of ’slice group 1‘. The direction
of the box-out can be either clockwise or counterclockwise;

• Explicit (Type 6) allows the user to define a slice group to each of the
macroblocks independently. Initially this will be done by a configuration
file.

The other types (such as raster scan, wipe out, check board pattern, etc.)
were not used because they do not allow us to create an actual shape.

19.2.2 Region-Of-Interest

Region-of-interest coding can be used to encode objects of interest with a
higher quality. The remainder of the image can be regarded as background
information and can thus be encoded more coarsely. The advantage of this
method is that the image parts that the viewer is looking at can be transmitted
with a higher quality.This technique can be combined with other techniques
such as progressive coding. The result is that the overall viewing experience
remains highly satisfactory, while the transmission can be performed at lower
bitrates.
Another advantage of ROI-coding is that the ROIs can be transmitted first.
This can be realized by the use of slices (e.g. if ’slice group 0’ is transmitted
first, by placing the ROI in ’slice group 0’, it should arrive first at decoder
side). When network congestion occurs, the probability of having a frame
that contains at least something the viewer most likely wants to see, is higher
with ROI coded imagery than without ROI. Nevertheless, when a transmission
error occurs at a header, inside the ROI data or in the packet length indicator,
the stream can not be decoded at all. This can partially be prevented when a
small ROI is chosen, which makes the probablility of an error inside the ROI
lower.

There are different models to implement ROI-coding in H.264 (this is
discussed in section III). These models share one trait: they all make use
of slice groups. When using I-slices, the ROI will always be visible where it is
defined by the user. This is because no references are needed for the encoding
of I-slices. On the other hand, when P-slices are used and the position of the
ROI changes, but without changes in the previous ROI (by means of motion
vectors, e.g., static background) both the old and new ROI will still be visible.
This is because for the old ROI no additional information is sent and the old
data still will be used. This creates the possibility for having two visually
more attractive regions. The current ROI (’slice group 0’) and the previous
ROI contain the same encoded data because no additional data is sent for
these macroblocks.
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19.3 Implementation

Our implementation is targeted towards an application which uses interactive,
user-defined ROIs (e.g. by means of a mouse pointer). Similar research about
ROI in AVC already supported the efficency of ROI coding [4] [3]. These
models both use FMO type 2. Our research was focussed on the usefullness of
the other FMO types. The ROI will be defined by a variable called RoiPos,
which contains the MB number of the central ROI position (i.e. the exact
mouse position). An algorithm will determine which of the surrounding MB’s
are contained in the ROI.

The model’s implementation contains 3 major parts: ROI creation, ROI
check and xROI.

1. ROI Creation

During the ROI creation, different FMO types are distinguished. Each one of
them needs a different approach to update the ROI.

• FMO Type 2.
Both coordinates, respectively Top Left and Bottom Right, are com-
puted at the encoder side;

• FMO Type 3.
This model allows a box-out kind of shape. For ROI, this is restricted
to a square. In order to create the square, the number of MBs needed
is calculated depending on the size of the ROI. After this, the num-
ber of MBs is assigned to the parameter controlling the box-out (i.e.
slice group change rate minus 1);

• FMO Type 6.
For this type, every MB is checked to find out if it is part of the ROI
(depending on the size and selected shape). Four shapes are considered
in this model (Square, Rectangle, Diamond and Octagon). Firstly, to be
able to use the square shape for all the models, so they can be compared.
Secondly, to find out if it would be useful to use other shapes. At last,
we wanted to implement different shapes to prove one is not constrained
to symmetric structures, but amorph structures can also be implemented.
Figures 19.1, 19.2 and 19.3 show the FMO map for 3 shapes (ROI=0,
xROI=1, non-ROI=2). ’Slice group 0’ contains the ROI for the selected
shape.

An amorph (x)ROI could be interesting when one would choose to encode
specific structures contained in the image, or when putting all moving MBs
in one slice group by using an activity map [3]. This way not only FMO
type 2 would be used to break up the screen in different rectangles, but also
FMO type 6 could contain those macroblocks, having a higher Mean Absolute
Difference (MAD) than a certain threshold. An algorithm then of course needs
to be designed to determine the ROI. To do this, each macroblock should be
checked separately to find out if it is part of the ROI.
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Fig. 19.1. Square

Fig. 19.2. Possible ROI Shapes. ROI=0, xROI=1, non-ROI=2

Fig. 19.3. Possible ROI Shapes. ROI=0, xROI=1, non-ROI=2

2. ROI Check

Apart from the multiple shapes, a variable position has to be supported,
except for FMO type 3. This position update is sent from the decoder side.
We propose to let the decoder use UDP packets to send the MB number which
corresponds with the ROI. The decoder will only send this position after a
change of position has occurred. After checking the value, the new ROI will be
checked to know if it will keep its size. This is done to make sure the viewer’s
attention is not distracted by the varying size of the ROI, which can occur
when the ROI is located at a border of the image. This means that, when
pointing to a MB which is one of the first or last MBs of a row, the RoiPos
will be moved respectively to the right or the left. The same will happen for
the upper and lower border of the screen.
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3. xROI

A third improvement over the other models is the extension we added to the
ROI, called extensible ROI (xROI). The xROI smoothes the disturbing edge
between the ROI and the non-ROI areas. Typically when a large difference ex-
ists between both Quantisation Parameters (QP), a visually disturbing transi-
tion between the ROI and non-ROI-coded image part is present. By using the
proposed xROI, a controllable option is introduced, to apply an intermediate
QP, in between the ROI QP and the non-ROI QP. Apart from that, another
parameter, xROI, will allow the user to disable xROI completely if desired.
Figures 19.1, 19.2 and 19.3 show an extensible Region-Of-Interest with width
2, applied to 3 different shapes.

Issues concerning border checking have been accounted for. When the ROI
is applied close to the border of the frame (after checking or ’native’), xROI is
not applied for the bordering of the ROI. And thus, no additional replacement
of the RoiPos needs to be done. Figure 19.4 shows the used FMO map and
the resulting image figure 19.5 ; xROI is disabled on the right side, while only
a part of the bottom xROI is maintained.

Fig. 19.4. FMO map

The xROI will have lower priority than ROI but will have higher priority
than non-ROI parts of the picture. This results in slice group 1, which will
contain all xROI MBs. For FMO type 3 xROI can’t be used because FMO
type 3 can only contain 2 slice groups: ”The box” and the rest of the screen.
For FMO type 2 the two coordinates are calculated and in case of the picture’s
border, the parameters are adjusted in such a way that it fits the previously
described border checking methodology. In case of FMO type 6, an additional
check is included while checking the ROI, to see if each MB makes part of the
xROI.

Once the slice groups are created, it is just a matter of applying the cor-
rect quantization parameter settings to the slice groups. This quantization
parameter will be applied to all MBs contained in the slice group.
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Fig. 19.5. Resulting image

19.4 Test Cases

In our experiments we compared multiple ROI models. Comparisons between
the usage of ROI and non-ROI have been published in [4] [3]. Implementations
and tests were based on the JM10.2 reference software [1].

19.4.1 FMO type Comparison

We generated streams for FMO types 2 and 6, both static and dynamic ROI,
with or without xROI, for the square and rectangle shapes. Additionally,
a stream was encoded using only a static FMO type 3 square shaped ROI
(moving ROI’s are not supported by FMO type 3).

All the simulations used the same QP settings and RoiPos. This was
done to ensure that the encoding speeds are equal, except for the slice group
updating mechanisms, and to make sure any change in bitrate was due to
the updates of the picture parameter set. A parameter set consists of 3 QPs
(e.g. 25-30-35), first is the QP for the ROI-area (25), second the QP for the
xROI-area (30) and last the QP for the background (non-ROI area (35)). For
this test we used (25-30-35) as QP set.

The test sequence ”Football” (4:2:0, CIF, 30 fps) was used and the RoiPos
was set to 209. This position corresponds with the MB number where box-
out starts counting and thus all the static ROI tests have the same visual
characteristics. The results are shown in Table. 19.1. It can be clearly seen
that the difference in terms of bitrate between the different FMO types is
not large, while the PSNR (compared to the original test sequence) remains
largly the same. The difference in bitrates is mainly due to the difference in
picture parameter set information which has to be sent. For Type 2 and 6 the
difference in bitrates is due to the different picture parameter set information
that has to be sent. Both types send the same data but will have a different
type of signalisation. Type 3 can have another bitrate due to the fact that the
MB’s are ordered differently such that entropy encoding can cost (or save)
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some bandwidth. It should be noted that the encoding time is expressed in
seconds in Table 19.1 but is based on non-optimized code. The tests were
done on a single threaded machine, Laptop, 1.4GHz AMD Mobile under MS
Windowswith no other tasks running but the standard services. Altough a

Table 19.1. Comparison of the different FMO types

larger bitrate is needed when using FMO type 6 it should be mentioned that
this type has some advantages over type 2. First, less decoding time is needed
(not shown), due to the fact that the decoder does not have to generate the
FMO map, but instead receives all necessary information from the picture
parameter set. Secondly, other structures than typical symmetric squares can
be generated with type 6. Note that the PSRN of the xROI implementations
is larger than those with the basic ROI implementation without xROI. This
is normal since the XROI area is quantized more coarsely in the examples
without an xROI, where it is simply part of the non-ROI.

19.4.2 ROI Shape and QP Set Comparison

To find out which shapes (see Table 19.2 for an overview of shapes that were
implemented) are useful in certain circumstances, multiple ROI shapes, all
having approximately the same number of MBs in the ROI, have been tested
with several different QP sets applied to them. The same, changing ROI po-
sitions were used in each test.

The simulations were done once for each combination of a Shape and QP
set because no variable parameters, like encoding time, are taken into account.
Simulation with the same combination will always result in the same output,
which means the same bitrate and same resulting sequence. This sequence
will thus generate the same PSNR and SSIM measurements. The free ”MSU
Video Quality Measure Version 1.0” tool was used for the SSIM measurements
[2]. The tests were again done using the ”Football” sequence. For the SSIM
calculations, we pre-encoded two sequences, one with QP 15 and one with QP
25. This QP values were applied on the whole picture (so there is no (x)ROI).
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Table 19.2. Implementation Overview (x denotes: not implemented)

One of the most interesting things to see is that for some QP-sets the
bitrate is higher than for others, while the quality measurements are worse as
can be seen on Fig. 19.6

Fig. 19.6. Bitrates and PSNR for ’Square’ with different QP sets

For example, the image when using QP set (15-25-40) is worse for every
quality measurement compared to the images when using QP sets (25-30-35)
or (25-33-35) while the last two bitrates are lower. This also can be seen in
Table 19.3. One would expect that when higher bitrates are obtained, the
resulting quality would become better. Explanation can be found in the log-
arithmic nature of the quantization parameters. The difference between QP
15 and QP 25 is visually less noticeable (both for humans as for quality mea-
surements) than it is between QP 35 and QP 40. Thus the first difference will
not influence PSNR and SSIM much.

The shape that should be chosen will depend mainly on the content of the
picture. This means that the QP set can only be controlled to influence the
bitrate and the perceived image quality. Additionally, we compared different
ROI shapes. Depending on the situation, one will be favored above the other.
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Table 19.3. Summarized Table

Our experimental tests showed that a rectangle without xROI will have
the lowest bitrate. For a sequence like ”BUS”, this is a good approach, but
when the ROI is e.g. a head, it is not desirable to see only the eyes. The reason
why the square delivers better results for a given QP set, even though it has
more MBs encoded with a lower QP is due to the content inside thos MBs.
We also discovered that for the majority of QP sets we tested, the square
without xROI always has a lower bitrate than the diamond or the octagonal.
But these xROI solutions usually generate the highest bitrates compared to
the other xROI bitrates. This is mainly caused by the high number of MBs
contained in the xROI.

From these results we can formulate the following conclusion: When less
bandwidth is available, lowering the QP of the non-ROI should be done first.
Care should be taken that a homogeneous QP set is preserved, meaning that
the 3 QPs are in a relatively close interval. This way the overall picture quality
is perceived to be better. This is in contrast to QP sets (15-25-40) and (25-
30-40) (not shown in table) where bitrates are higher and PSNR is less in
comparison with homogeneous QPs in the same range. After increasing the
non-ROI QP, it is recommended to increase the xROI QP. If necessary, QPs
can still be increased or the size of the ROI can be reduced. All this will result
in a reduction of bandwidth. With a noticeable, but still acceptable difference
in quality, we can reduce the bandwidth of 2.5 Mbps (with the global QP
set to 25) to approximately 1.3 Mbps (QP set 25-33-35). Apart from this,
different shapes will of course give different results.

19.5 Conclusions

The need for ROI coding in mobile video applications or other scalability
techniques is becoming apparent. H.264, a standard that is becoming very
popular, is a typical coder that might be used in these mobile applications.
ROI coding in this codec is relatively straightforward thanks to some very
interesting features in the standard, such as usage of slices and flexible mac-
roblock ordering. Existing research is mainly focused on reducing bandwidth
and not on the user’s viewing experience. Our research was focused on ROI-
shape comparison and the introduction of an extensible ROI to make the
transition of the ROI to non-ROI more smooth. Extensive testing of different
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shapes and FMO types enabled us to discover some very useful results when
it comes to choosing the kind of ROI implementation to be used.

The major differences between the FMO types are with respect to the
picture parameter settings and the ordering of the MBs. FMO type 3 sends
less picture parameter set information compared to the other FMO types, but
the different ordering of the MBs can lead to an increased bitrate. Additionally,
the RoiPos cannot be moved and no xROI can be applied when box-out is
used. Therefore, we advise not to use the box-out ROI model (FMO type 3).

When a complex algorithm can be implemented - it does not necessarily
lead to larger encoding times - we advise to use FMO type 6. This ROI
model can be a predefined shape, an amorph shape, or just a selection of MBs
generated by an algorithm or based on an activity map [3].

Lower bitrates are not always guaranteed when using the same number
of MBs in the same area as when using FMO type 2. When a more accurate
shape can be constructed, bandwidth will be reduced because less MBs will be
in high quality. When just a basic approach of ROI functionality can be imple-
mented, less attention must be given to an accurate ROI detection model. For
simple applications, foreground-background FMO mapping should be used,
a combination of the latter and explicit or only explicit FMO mapping is
recommended in more advanced applications.
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Summary. This chapter includes the rough sets theory for video deinterlacing that
has been both researched and applied. The domain knowledge of several experts
influences the decision making aspects of this theory. However, included here are a
few studies that discuss the effectiveness of the rough sets concept in the field of
engineering. Moreover, the studies involving a deinterlacing system that are based
on rough sets have not been proposed yet. This chapter introduces a deinterlacing
method that will reliably confirm that the method being tested is the most suitable
for the sequence. This approach employs a reduced database system size, which
contains the essential information for the process. Decision making and interpolation
results are presented. The results of computer simulations show that the proposed
method outperforms a number of methods that are presented in literature.

20.1 Introduction

The current analog television standards, such as NTSC, PAL, and SECAM,
are based on interlaced scanning formats. Because the video industry is transi-
tioning from analog to digital, video processing equipment increasingly needs
to transition from analog to digital as well. Thus, the demand for progres-
sive material will increase, which causes a directly proportional increase in
the demand for video processing products with high quality deinterlacing.
Deinterlacing methods can be roughly classified into three categories: spatial
domain methods [1],[2], which use only one field; temporal domain methods
[3], which use multiple fields; and spatio-temporal domain methods [4]. The
most common method in the spatial domain is Bob [2], which is used on small
LCD panels. However, the vertical resolution is halved, and this causes the
image to have jagged edges. Weave is the most common method in the tempo-
ral domain [3]. However, this method gives motion artifacts. There exist many
edge direction based interpolation methods. The edge line average (ELA) al-
gorithm was proposed to interpolate pixels along the edges in the image [1].
Oh et al. propose a spatio-temporal line average (STELA) algorithm. ELA
utilizes only the spatial domain information. However, the amount of data
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limits the interpolation by causing missed pixels at complex and motion re-
gions. Thus, STELA was proposed in order to expand the window to include
the temporal domain. Generally, various features offer several attributes for
the nature of a sequence. However, sometimes the attributes become too much
to make essential rules. Although some rules are decided, even human experts
are unable to believe the rules. Thus, the conventional deinterlacing method
cannot be applied to build an expert system. In order to create an expert
system, rough sets theory is applied to classify the deinterlacing method. In
this theory, prior knowledge of the rules is not required, but rather the rules
are automatically discovered from a database. Rough sets theory provides a
formal and robust method of manipulating the roughness in information sys-
tems [5]. It has been applied to several areas including knowledge discovery
[6],[7],[8],[9], feature selection [10], clustering [11], image recognition and seg-
mentation [12],[13],[14], quality evaluation [15], and medical image segmen-
tation [16],[17],[18]. It has proved its advantage in real world applications,
such as semiconductor manufacturing [19], landmine classification [20], fish-
ery applications [21], and power system controllers [22]. Rough sets theory
has been used in imaging, but its application in video deinterlacing has yet
to be investigated. This chapter presents a decision making algorithm that
is based on rough sets theory for video deinterlacing. The operation of a de-
cision in the deinterlacing method is intrinsically complex due to the high
degree of uncertainty and the large number of variables involved. The anal-
ysis performed by the operator attempts to classify the operational state of
the system in one of four states: plain-stationary region, complex-stationary
region, plain-motion region, or complex-motion region. The proposed rough
sets deinterlacing (RSD) algorithm employs four deinterlacing methods: Bob
[2], Weave [3], ELA [1], and STELA [4]. In Section 20.2, the basic concepts
of the rough sets theory are discussed. In Section 20.3, the proposed rough
sets deinterlacing algorithm is described. In Section 20.4, the experimental
results and performance analysis are provided to show the feasibility of the
proposed approach. These results are compared to well-known, pre-existing
deinterlacing methods. Finally, conclusions are presented in Section 20.5.

20.2 Basic Concepts of Rough Sets Theory

Rough sets, introduced by Pawlak et al., is a powerful tool for data analysis
and characterizing imprecise and ambiguous data. It has successfully been
used in many application domains, such as machine learning and expert sys-
tems [5].

20.2.1 Preliminary

Let U �= ∅ be a universe of discourse and X be a subset of U . An equivalence
relation, R, classifies U into a set of subsets U/R = {X1, X2, · · · , Xn} in which
the following conditions are satisfied:



20 Rough Sets-Based Image Processing for Deinterlacing 229

Xi ⊆ U,Xi �= ∅ for any i
Xi

⋂
Xj �= ∅ for any i, j⋃
i=1,2,··· ,nXi = U

(20.1)

Any subset Xi, which is called a category, class, or granule, represents an
equivalence class of R. A category in R containing an object x ∈ U is de-
noted by [x]R. For a family of equivalence relations P ⊆ R, an indiscernibility
relation over P is denoted by IND(P ) and is defined as follows:

IND(P ) =
⋂
R∈P

IND(R) (20.2)

The set X can be divided according to the basic sets of R, namely a lower
approximation set and upper approximation set. Approximation is used to
represent the roughness of the knowledge. Suppose a set X ⊆ U represents a
vague concept, then the R − lower and R − upper approximations of X are
defined.

RX = {x ∈ U : [x]R ⊆ X} (20.3)

Equation 20.3 is the subset of all X , such that X belongs to X in R, is
the lower approximation of X .

RX =
{
x ∈ U : [x]R

⋂
X �= ∅

}
(20.4)

Equation 20.4 is the subsets of all X that possibly belong to X in R,
thereby meaning that X may or may not belong to X in R. The lower ap-
proximation RX contains sets that are certainly included in X , and the upper
approximation RX contains sets that are possibly included in X . R−positive,
R− negative, and R− boundary regions of X are defined respectively as fol-
lows:

POSR(X) = RX, NEGR(X) = U −RX, BNR(X) = RX −RX (20.5)

Fig. 20.1 shows the R− lower and R−upper approximations of the family
X , and three kinds of regions: R−negative region of X , R− boundary region
of X , and R− positive region of X .

20.2.2 Reduct and Core

In rough sets theory, a decision table is used for describing the object of uni-
verse. The decision table consists of two dimensional tables. Each row is an
object, and each column is an attribute. Attributes can be divided into either
a condition attribute or a decision attribute. However, the entire condition
attribute may not be essential. Because there may exist surplus attributes
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Fig. 20.1. Definition of R-approximation sets and R-regions.

and this excess can be eliminated, correct classification is guaranteed. Rough
sets theory classifies the attributes in the decision table into three types ac-
cording to their roles in the decision table: core attributes, reduct attributes,
and superfluous attributes. Here, the minimum condition attribute set can
be received, which is called reduction. One decision table might have sev-
eral different reductions simultaneously. The intersection of the reductions
is the core of the decision table and the attribute of the core is the impor-
tant attribute that influences attribute classification. Suppose R is a family of
equivalence relations. The reduct of R, RED(R), is defined as a reduced set
of relations that conserves the same inductive classification of set R. The core
of R, CORE(R), is the set of relations that appears in all reduct of R, i.e.,
the set of all indispensable relations to characterize the relation R. Generally,
rough sets theory provides several advantages as a data mining tool. Rough
sets theory provides a consistent mathematics tool that can rigidly deal with
data classification problems. Thanks to data reduction and data core, useful
characteristics can be selected and are sufficient to express the data. Reducing
the amount of data lessens computational time as well. Rough sets theory con-
tains a form that represents a model of knowledge. This model becomes a set
of equivalent relations, which clarifies the mathematical meaning. The rules
of classification are obtained by analyzing and processing with mathematical
methods. Finally, rough sets theory does not require extra information, which
allows for practical application in conjunction with professional knowledge.
This improves attribute reduction and produces specification based decisions
of a high quality. The problem of identifying the application space is similar
to that of identifying redundant attributes and eliminating the redundancy.
Hence, all the attributes with no useful information are removed.

20.3 Heuristics for Information Acquisition and Its
Application

Nearly all feature values are continuous data, and are demonstrated to be
unsuitable for the extraction of concise symbolic rules. Simultaneously, the
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conditional rules have poor predictions. Hence, the original analog data must
be transformed into normalized discrete data. The process of transforming
data sets with continuous attributes into input data sets with discrete at-
tributes is called discretization. Continuous data must be converted to dis-
crete intervals, in which each interval is represented by a label. Discretization
not only reduces the complexity and volume of the data set, but also serves as
an attribute filtering mechanism. In this chapter, it is assumed that an image
can be classified according to four main parameters: SMDW , TMDW , SD,
and TD (5-6). β is an amplification factor that affects the size of membership
functions resulting in TMDW and SMDW varying between 0 and 255. NWT

and NWS each provide 6, and x(i, j, k) denotes the intensity of a pixel, which
will be interpolated in our work. i refers to the column number, j refers to
the line number, and k refers to the field number.

SMDW =

[
max(i,j,k)∈WS

x(i, j, k)−min(i,j,k)∈WS
x(i, j, k)

]×NWS∑
(i,j,k)∈WS

x(i, j, k)
× β

(20.6)

SD = |x(i, j − 1, k)− x(i, j + 1, k)| (20.7)

TMDW =

[
max(i,j,k)∈WT

x(i, j, k)−min(i,j,k)∈WT
x(i, j, k)

]×NWT∑
(i,j,k)∈WT

x(i, j, k)
× β

(20.8)

TD = |x(i, j, k − 1)− x(i, j, k + 1)| (20.9)

The spatial domain maximum difference over the window (SMDW ) pa-
rameter and the temporal domain maximum difference over the window
(TMDW ) parameter represent the spatial and temporal entropy. Spatial dif-
ference (SD) or temporal difference (TD) is the pixel difference between two
values across the missing pixel in each domain. The continuous values of the
features have been discretized into a symbol table. We assume that the pixels
with low SMDW or SD are classified within the plain area and that the
others are classified within the complex area. Furthermore, the pixels with
low TMDW or TD are classified within the static area, and the remaining
pixels are classified in the motion area. Based on this classification system,
a different deinterlacing algorithm is activated, in order to obtain the best
performance. Twelve pixels around the missing pixel must be read before at-
tributes may be extracted. Then, the extracted attributes are normalized at
the position of each missing pixel. The step of categorization of the attribute
involves converting the attributes from numerical to categorical. Data may be
lost during the conversion from analog to digital information. Neither of the
methods that are simply based on frequencies, nor those that are based on
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boundaries, are optimal. Instead, the numerical range is determined according
to the frequencies of each category boundary.

abcd total dB dW dE dT m abcd total dB dW dE dT m
1111(1) 8563 4965 2778 650 170 B 2111 (5) 1189 390 432 247 120 W

1112 287 171 46 59 11 - 2112 66 32 12 11 11 -
1113(2) 1663 823 223 526 91 B 2113 837 186 191 260 200 -
1121(3) 1065 107 711 147 100 W 2121 121 8 62 30 21 -

1122 143 44 57 12 30 - 2122 23 3 6 6 8 -
1123 230 47 73 41 69 - 2123 55 16 15 10 14 -

1131 (4) 1344 261 614 283 186 W 2131 (6) 2168 296 784 541 547 W
1132 149 34 45 31 39 - 2132 195 32 58 46 59 -

1133 (7) 1678 357 355 636 330 E 2133 (10) 5411 780 1386 1541 1704 T
1211 300 126 99 41 34 - 2211 670 195 146 187 142 -
1212 14 6 3 4 1 - 2212 30 11 7 8 4 -
1213 430 137 83 143 67 - 2213 (8) 1877 387 374 584 532 E
1221 86 13 34 24 15 - 2221 74 7 27 25 15 -
1222 8 2 4 0 2 - 2222 10 3 2 2 3 -
1223 103 13 46 24 20 - 2223 89 18 30 16 25 -
1231 372 73 116 89 94 - 2231 (11) 2696 452 670 736 838 T
1232 12 4 3 1 4 - 2232 91 17 24 24 26 -

1233 (9) 1431 214 279 305 633 T 2233 (12) 16570 2613 3792 4810 5355 T

Table 20.1. Set of the selected method (m) corresponding to each pattern.

The classification of each state is made according to an expert, and four
possible regions can be selected for the decision making for the video dein-
terlacing system: plain-stationary region, complex-stationary region, plain-
motion region, or the complex-motion region. The first step of the algorithm
is to redefine the value of each attribute according to a certain metric. The set
of all possible decisions is listed in Table 20.1. Let Table 20.1, where the infor-
mation system proposed is composed of R = {a, b, c, d,m|(a, b, c, d)→ (m)}.
This table is a decision table in which a,b,c, and d are condition attributes,
whereas m is a decision attribute. Using these values, a set of examples can
be generated. The attribute m represents the expert’s decisions, which are the
following:

m : B-Bob method; W-Weave method; E-ELA method; T-STELA method.
a : 1-SMALL (SMDW≤5); 2-LARGE (SMDW>5)
b : 1-SMALL (TMDW≤5); 2-LARGE (TMDW>5)
c : 1-SMALL (SD≤2); 2-MEDIUM (2<SD≤5); 3-LARGE (5<SD)
d : 1-SMALL (TD≤2); 2-MEDIUM (2<TD≤5); 3-LARGE (5<TD)

Average picture of the Foreman sequence has been employed as a training
image (for the 2nd to the 298th). It was found that 12 sets out of 36 sets
have more than 1000 pixels. The total pixel amount in the 12 sets is more
than 93% of all pixels. The other 24 sets have at most 7% of all pixels, and
will provide the complexity to the system. Thus, it is unsuitable to generate
rules to classify the other 24 sets. Furthermore, according to a hidden Markov
model, since the correlation of the image is more than 0.95, a set with a small
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number of pixels will be considered an edge region. The STELA method is
suitable for that region. Each twelve row in Table 20.1 has three bold char-
acters, which represent sorted number according to decision attributes mi (i:
B, W , E, and T ), which is shown in Table 20.2, the total number of pix-
els in each row, and the largest number among four methods, respectively.
Then a decision must be made as to which method is the most suitable for
the missing pixel. The difference between the real value and the Bob inter-
polated value is regarded as dB . In the same manner, dW , dE , and dT are
obtained. Finally, the most suitable method is selected as the one with the
smallest value among the four differences. When the differences are equal,
priority is given to the smallest complexity: Bob, Weave, ELA, and STELA.
Generally, Bob exhibits no motion artifacts and has minimal computational
requirements. However, the input for vertical resolution is halved before the
image is interpolated, thus reducing the detail in the progressive image. The
Weave process results in no degradation of static images. However, the edges
exhibit significant serrations, which is an unacceptable artifact in a broadcast
or professional television environment. Both of these techniques require less
complexity for interpolating a missing pixel. The processing requirements for
ELA or STELA are higher than that of Bob or Weave yet with the advan-
tage of higher output image quality. Rough set theory offers one mathematic
method that can strictly treat data classification problems. The idea behind
the knowledge base reduction is a simplification of Table 20.1. The algorithm
that provides the reduction of conditions is represented by the following steps:
1) Removing dispensable attributes. 2) Finding the core of the decision table.
3) Associate a table with reduct value. 4) Extract possible rules. To simplify
decision table, the reduction of the set of condition categories is necessary
to define the decision categories. By removing attributes a in Table 20.2(a),
a decision table, Table 20.2(b), is provided. However, this is inconsistent be-
cause Table 20.2(b) contains the following pairs (20.10), (20.11) of inconsistent
decision rules:

(rule 1 : b1c1d1 → mB) and (rule5 : b1c1d1 → mW ) (20.10)

(rule 7 : b1c3d3 → mE) and (rule10 : b1c3d3 → mT ) (20.11)

Thus, the attributes a cannot be removed. In the same manner, it has
been observed that all attributes are indispensable. This indicates that none
of the condition attributes can be removed from Table 20.2(a). Hence the
set of condition attributes is m-independent. The next step is to check where
some elementary condition categories can be eliminated, i.e., some superfluous
values of condition attributes in Table 20.2(a). For example, in the sixth de-
cision rule a2b1c3d1 → mW values b1 and d1 are core values because the rules
a2b1d1 → mW and b1c3d1 → mW are true, whereas the rules a2b1c3 → mW

and a2c3d1 → mW are false. The core values of each decision rule in Table
20.2(a) are given in Table 20.2(c). Now, all m-reducts of condition elementary
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(a) (b) (c)
U a b c d m U b c d m U a b c d m
1 1 1 1 1 B 1 1 1 1 B 1 1 - 1 - B
2 1 1 1 3 B 2 1 1 3 B 2 - - - - B
3 1 1 2 1 W 3 1 2 1 W 3 - - 2 - W
4 1 1 3 1 W 4 1 3 1 W 4 - - 3 1 W
5 2 1 1 1 W 5 1 1 1 W 5 2 - - - W
6 2 1 3 1 W 6 1 3 1 W 6 - 1 - 1 W
7 1 1 3 3 E 7 1 3 3 E 7 1 1 3 3 E
8 2 2 1 3 E 8 2 1 3 E 8 - - 1 - E
9 1 2 3 3 T 9 2 3 3 T 9 - 2 - - T
10 2 1 3 3 T 10 1 3 3 T 10 2 - - 3 T
11 2 2 3 1 T 11 2 3 1 T 11 - 2 - - T
12 2 2 3 3 T 12 2 3 3 T 12 - - 3 - T

Table 20.2. (a) Set of deinterlacing system; (b) Removing attributes a from Table
2; (c) Core of the attributes.

categories or the reduct values of the condition attributes of each decision
rule can be computed. In order to find reducts of the decision rules, the core
values of each decision rule, such as values of condition attributes of the rule,
need to be added so, that the predecessor of the rule is independent and the
whole rule is true. For example the sixth decision rule a2b1c3d1 → mW has
two reducts a2b1d1 → mW and b1c3d1 → mW , since both decision rules are
true and predecessor of each decision rule is independent. The results of each
decision rule in Table 20.2(a) are listed in Table 20.3(a). In order to find the
minimal decision algorithm, all superfluous decision rules must be removed
from the table. Table 20.3(b) shows the final essential decision rules. The final
results, presented in Table 20.3(b), can be rewritten as a minimal decision al-
gorithm in normal form. Combining the decision rules into one decision class
provides the following decision algorithm.

if((a1c1) ∨ (b1c1d3)) mB

else if(c2 ∨ ((a1 ∨ b1)c3d1) ∨ ((b1c1 ∨ b1d1 ∨ c1d1)a2)) mW

else if((b2 ∨ a2d3)c1 ∨ a1b1c3d3) mE

else mT

(20.12)

20.4 Experimental Results

In this section, objective quality and computational time are compared. Var-
ious simulations have been carried out, and natural images have been tested
for the verification. The proposed algorithm was implemented on a Pentium
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(a) (b)
U a b c d m U a b c d m
1 1 1 1 x B 1(1,1’,2) 1 x 1 x B
1’ 1 x 1 1 B 2(2’) x 1 1 3 B
2 1 x 1 x B 3(3) x x 2 x W
2’ x 1 1 3 B 4(4) 1 x 3 1 W
3 x x 2 x W 5(4’,6’) x 1 3 1 W
4 1 x 3 1 W 6(5) 2 1 1 x W
4’ x 1 3 1 W 7(5’,6) 2 1 x 1 W
5 2 1 1 x W 8(5”) 2 x 1 1 W
5’ 2 1 x 1 W 9(7) 1 1 3 3 E
5” 2 x 1 1 W 10(8) x 2 1 x E
6 2 1 x 1 W 11(8’) 2 x 1 3 E
6’ x 1 3 1 W 12(9) 1 2 x x T
7 1 1 3 3 E 13(9’,11,12) x 2 3 x T
8 x 2 1 x E 14(10) 2 1 x 3 T
8’ 2 x 1 3 E 15(10’,12’) 2 x 3 3 T
9 1 2 x x T 16(11’) x 2 x 1 T
9’ x 2 3 x T
10 2 1 x 3 T
10’ 2 x 3 3 T
11 x 2 3 x T
11’ x 2 x 1 T
12 x 2 3 x T
12’ 2 x 3 3 T

Table 20.3. (a) All reducts decision values; (b) Final sets of deinterlacing methods.

IV/2.80 GHz computer. For the objective performance evaluation, five CIF
video sequences were selected to challenge the five algorithms for ELA, Bob,
Weave, STELA, and the proposed method. Table 20.4 shows the PSNR re-
sult of different deinterlacing methods for various sequences. The results show
that the proposed method demonstrates the 2nd best objective performance
compared to the other conventional methods, in terms of PSNR. It also shows
that the proposed method has slightly less computational CPU time than the
ELA method.

For a subjective performance evaluation, the 171st frame of the CIF Table
Tennis sequence was adopted. The subjective views of the video sequences
are shown in Fig. 20.2. The wall, shadow, and the surface on the table are
classified into a plain-stationary region, the picture on the wall and the edge
of the table into a complex-stationary region, the shirt and the pants into a
plain-motion region, and the ball, right hand with racket, and left hand into
a complex-motion region. Fig. 20.2(b) and (c) shows no motion artifacts in
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Sequences (PSNR, computational CPU time)
Method Akiyo Flower Mobile News Table Tennis

Bob 39.69 dB 22.40 dB 25.49 dB 33.66 dB 32.01 dB
12.71 ms 15.27 ms 13.74 ms 12.92 ms 13.76 ms

Weave 40.67 dB 20.31 dB 23.36 dB 36.29 dB 24.75 dB
11.30 ms 12.38 ms 13.57 ms 11.68 ms 13.18 ms

ELA 37.68 dB 21.93 dB 23.34 dB 31.53 dB 31.23 dB
28.74 ms 28.83 ms 31.51 ms 29.47 ms 29.07 ms

STELA 44.65 dB 22.99 dB 27.26 dB 39.28 dB 31.58 dB
42.96 ms 44.43 ms 48.39 ms 44.07 ms 44.74 ms

Proposed 44.26 dB 22.53 dB 26.73 dB 39.02 dB 31.08 dB
22.34 ms 23.63 ms 25.06 ms 22.92 ms 23.61 ms

Table 20.4. Results of different interpolation methods for five CIF sequences (Unit
= dB, ms).

the motion region. However, the input vertical resolution is halved before the
image is interpolated, thus reducing the detail in the progressive image. While
Weave results in no degradation of static region, the moving hand exhibits
significant serrations, see Fig. 20.2(d). STELA gradually reduces the vertical
detail as the temporal frequencies increase, as shown in Fig. 20.2(e). The
vertical detail from the previous field is combined with the temporally shifted
current field, indicating that some motion blur occurred. Fig. 20.2(f) shows
the proposed RSD utilized image. RSD has slightly less quality than that of
STELA. RSD causes some degradation at the region around the picture on
the wall, yet only with the 52.34% of complexity of STELA algorithm. From
the experiment results, it is observed that the proposed RSD algorithm has
good objective and subjective qualities for different sequences, with a low
computational CPU time required to achieve the real-time processing.

20.5 Conclusion

This chapter describes an application of rough set to feature selection and
reduction in deinterlacing systems. Few studies exist that discuss the effec-
tiveness of the rough set concept in the field of engineering, where the domain
knowledge of experts plays a key role in determining deinterlacing methods.
Moreover, the studies involving deinterlacing systems that are based on the
rough set method have not been proposed yet. This chapter presents a novel
deinterlacing approach using a reduced size of database, which keeps only the
essential information to the process. Decision making and interpolation results
are presented. The results of computer simulations show that the proposed
method outperforms a number of methods in literature.
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(a) Original (b) ELA

(c) Bob (d) Weave

(e) STELA (f) Proposed method

Fig. 20.2. Subjective quality comparison of the 171st Table Tennis CIF sequence.
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Summary. In packet switched networks, packets may get lost during transmission.
As these networks are more and more used for image and video communication, there
is a growing need for efficient reconstruction algorithms. In wavelet coded images,
the lost coefficients are typically replaced by zeros. This results in annoying black
holes in the received image, mainly due to the loss of the low frequency content. In
this chapter, we present a novel locally adaptive interpolation method for the recon-
struction of the lost low frequency coefficients. We interpolate a lost low frequency
coefficient from its four neighbors, and we determine the interpolation weights by
the energy of the corresponding coefficients in the high frequency subbands.

Compared to older methods of similar complexity, the proposed scheme estimates
the lost coefficients much better: the Peak Signal to Noise Ratio is increased with up
to 4.3 dB. The results demonstrate a significant improvement of the visual quality.

Key words: passive error concealment, image reconstruction, wavelet coding,
packet loss, error concealment, image communication

21.1 Introduction

Data loss arises often in packet switched networks due to network conges-
tions. This is an especially important problem in case of compressed data,
where the loss of a single bit may make the rest of the data stream unusable.
In typical, non urgent network applications such as email, the data is often
protected (e.g., by forward error correction) or in case of data loss, a packet
can be retransmitted. These techniques are called Active Error Concealment.
A good overview is given in [1]. In certain applications, such as real time video
communication, the retransmission of a packet may be too slow and hence not
tolerable, or in case of broadcasting, there simply may be no return channel.
In these cases, Passive Error Concealment, i.e., postprocessing at the receiver,
is necessary to achieve a high quality of the received video.
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Passive error concealment exploits the redundancy in the image, using the
correctly received data to reconstruct the lost information as well as possi-
ble. The data should be spread over different packets in order to make this
reconstruction possible. This is achieved by the so-called packetization, which
serves two purposes. Firstly, if some data gets lost during the transmission,
then the beginning of a packet acts as a resynchronization point. Secondly,
a good packetization spreads neighboring coefficients over different packets,
ensuring in this way that the lost data can be estimated from its correctly
received neighboring data. Examples of packetization techniques are parity
based slicing [2] or a packetization based on the partitioning of the Z2 lattice
[3]. In this chapter, we use the packetization strategy of [3], but any dispersive
packetization strategy will work with our reconstruction algorithm.

We focus on wavelet based image and video coding. Loss of a packet of
a wavelet coded image results in dark blobs. These blobs are mainly due to
the loss of low frequency coefficients. As these coefficients contain most of the
energy, they are the most important and should be reconstructed with most
care. Although the wavelet transform tends to decorrelate the signal, there
are substantial spatial dependencies between the coefficients, especially in the
low-pass subband. These spatial dependencies can be used for the estimation
of a lost coefficient. A bilinear interpolation [3] gives already good results,
except near edges. The coefficients near edges are rapidly changing, and may
be incorrectly estimated due to lack of correlation in at least one direction.
The resulting errors are highly visible in the reconstructed image.

Different approaches exist to reconstruct the low frequency coefficients
near edges more accurately. In [4], a lost low frequency coefficient is interpo-
lated by fitting a cubic interpolative surface to the known coefficients. Correct
edge placement is achieved by adapting the interpolation grid in horizontal
and/or vertical direction according to the high frequency content. This method
gives better results than the bilinear interpolation, but is also more complex
and slower which may be less suited for low-end video clients such as portable
devices with only a small processing capacity. In [5], the low frequency sub-
band is repaired by a maximum a posteriori approach, using a Markov random
field prior in each subband. The potential functions are adapted locally by es-
timating the edge characteristics based on the evolution of the coefficients
across scales. This technique gives better results than the bilinear interpola-
tion, but it requires much more computational effort. In our previous work [6],
we proposed an interpolation technique where the lost low frequency coeffi-
cients are interpolated along the globally dominant correlation direction. This
preferential direction is calculated by the sender and, after binning, sent to
the receiver along with the wavelet coefficients. The receiver then adapts the
interpolation weights according to this dominant correlation direction and the
strength of this correlation. This method is faster than the fitting of a cubic
interpolative surface of [4], and the maximum a posteriori approach of [5],
but it has the following drawbacks. Firstly, the dominant correlation direc-
tion needs to be estimated at the sender side, which is not done by standard
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encoders. Secondly, this method takes into account only a globally dominant
correlation direction, which may differ significantly from the locally dominant
correlation properties at some positions in the image.

In this chapter, we propose a locally adaptive interpolation method with
a complexity similar to that of the bilinear interpolation [3]. We estimate
the locally optimal interpolation direction from the corresponding high fre-
quency content (i.e., the frequential neighbors). In this way, we preserve the
edge structures much better than standard schemes with constant interpo-
lation weights. For low packet loss rates, the proposed interpolation method
increases the Peak Signal to Noise Ratio (PSNR) with up to 4.3 dB compared
to reconstruction methods of similar complexity. For high packet loss rates,
the PSNR is increased with up to 1.85 dB.

In the next section we describe the proposed interpolation method. The
reconstruction of the high frequency coefficients is presented in Sect. 21.3. Re-
sults and discussion are in Sect. 21.4, and in Sect. 21.5 we draw the conclusions
and give some remarks about further work.

21.2 Reconstruction of Low Frequency Coefficients

Our reconstruction method is developed independently from the wavelet trans-
form. We mainly tested it for the Symlet wavelet transform of order 4, but it
can easily be extended to other types of wavelet transforms.

In the remainder, we use the following notation: LLn denotes the low-pass
subband (the scaling coefficients) at the decomposition level n; the wavelet
coefficients are organized into the subbands LH�, HL� and HH�, which denote
respectively horizontal, vertical and diagonal details at the decomposition level
� where � ∈ {1, . . . , n}.

In the remainder of this section, we describe our reconstruction method for
lost LLn coefficients. The optimal interpolation weights are thereby estimated
from the corresponding LHn and HLn coefficients. For clarity, we will omit
the index n, which denotes the scale. The subscripts will denote the spatial
position. For example, LLi,j denotes the scaling coefficient at spatial position
(i, j).

21.2.1 Detection of the Local Correlation

In the proposed method, a lost coefficient LLi,j is estimated by adaptive
weighted averaging in two directions: vertically (using the upper and lower
coefficients LLi−1,j and LLi+1,j), and horizontally (using the left and right
coefficients LLi,j−1 and LLi,j+1):

L̂Li,j = αVi,j (LLi−1,j + LLi+1,j) + αHi,j (LLi,j−1 + LLi,j+1) . (21.1)

As a neighbor of a lost coefficient may also be lost, we first interpolate lost
neighbors by averaging out its correctly received neighboring coefficients.
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The weighting factors for the vertical and horizontal direction, αVi,j and
αHi,j , are estimated locally at each spatial position (i, j). We relate these local
interpolation weights to a measure of the local correlation in the correspond-
ing directions. To estimate the local correlation, we use the high frequency
subbands. Large magnitude coefficients in the HL subband indicate a vertical
edge, and hence vertical correlation. Large magnitude coefficients in the LH
subband indicate the opposite. We define:

ELH
i,j = LHi−1,j

2 + LHi,j
2 (21.2)

and
EHL
i,j = HLi,j−1

2 + HLi,j
2 . (21.3)

Intuitively, if ELH
i,j  EHL

i,j then we would like to have αHi,j = 1/2 and
αVi,j = 0, which means a horizontal interpolation. If ELH

i,j ! EHL
i,j then it would

be best to choose αHi,j = 0 and αVi,j = 1/2, i.e., a vertical interpolation. In the
following, we experimentally determine the optimal (in the mean squared error
sense) relationship between the interpolation weights and the high frequency
coefficient energies.

21.2.2 Optimal Interpolation Weights

Our experiments showed that αHi,j and αVi,j do not depend on the exact val-
ues of ELH

i,j and EHL
i,j , but only on the ratio EHL

i,j /ELH
i,j . We define the high

frequency energy ratio

R =
EHL
i,j

ELH
i,j

(21.4)

as a measure of the local correlation direction. We calculated this energy ratio
for all the low frequency coefficients (at level 3) from 146 different images.
Then we quantized the obtained range of energy ratio values into 20 intervals.
Next, the low frequency coefficients for which the energy ratio was within the
same interval, were grouped together. For each of these groups of coefficients,
we jointly optimized the interpolation weights αHi,j and αVi,j with the least
squares method. The resulting optimal values of αHi,j and αVi,j in function of
R are given in Fig. 21.1

Based on the experimental data from Fig. 21.1, we propose the following
model for αHi,j and αVi,j :

α̂Hi,j =
1
2

1
1 + R

, (21.5)

α̂Vi,j =
1
2

R

1 + R
. (21.6)

Note that this model fits the experimental data very well and it yields an
accurate estimation of the optimal interpolation weights αHi,j and αVi,j from
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the energy ratio R. By substituting (21.4) in (21.5) and (21.6), we obtain
respectively:

α̂Hi,j =
1
2

ELH
i,j

ELH
i,j + EHL

i,j

, (21.7)

and

α̂Vi,j =
1
2

EHL
i,j

ELH
i,j + EHL

i,j

. (21.8)

Note that if ELH
i,j  EHL

i,j (the correlation of the coefficients is much higher
in the horizontal than in the vertical direction) then αHi,j ≈ 1/2 and αVi,j ≈ 0,
and the lost coefficient LLi,j is reconstructed by horizontal interpolation as
intuitively expected. Vice versa, if ELH

i,j ! EHL
i,j , then αHi,j ≈ 0 and αVi,j ≈ 1/2,

and the lost coefficient LLi,j is reconstructed by vertical interpolation.
If ELH

i,j = EHL
i,j , there is no preferential interpolation direction and (21.7)

and (21.8) yield in this case αHi,j = 1/4 and αVi,j = 1/4, which is equivalent to
bilinear interpolation. Note that, independent ofELH

i,j and EHL
i,j , 2αHi,j+2αVi,j =

1 always holds. If ELH
i,j = EHL

i,j = 0 , then we choose αHi,j = αVi,j = 1/4 .

21.3 The Reconstruction of High Frequency Coefficients

High frequency coefficients are difficult to estimate because of the sparse and
decorrelated representation. However, the recovery of these coefficients is of
less importance, since their loss has less impact on the visual quality. This is
because the coefficients are mainly zero, except near significant edges. Because
high frequency content is correlated in the direction where there was only
low-pass filtering and no high-pass filtering, lost LHi and HLi coefficients
can be estimated by a one dimensional linear interpolation in the direction
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(a) (b) (c) (d) (e)

Fig. 21.2. Original images: (a) Lena, (b) Goldhill, (c) Tweety, (d) Nike Temple,
(e) Sunset

where there was only low-pass filtering. This technique has already proven
effective in [3, 4]. As errors in the HHi-subband are even less visible, lost
HHi coefficients are set to zero.

21.4 Results and Discussion

In this section, we compare our interpolation method with existing recon-
struction methods with a similar complexity such as the bilinear concealment
[3] and our previous method which is based on the globally dominant correla-
tion direction [6]. We performed the following experiment: for five test images
from Fig. 21.2 (each image has a size of 256 × 256), we simulated the trans-
mission over a lossy packet network. The wavelet coefficients of each image
were stored in 16 packets using the dispersive packetization strategy of [3].
By using a dispersive packetization strategy, we avoid the possibility that all
neighbors of a lost coefficient are also lost, if the number of lost packets p is
equal to or smaller than 4. On average, the number of lost neighbors is also
minimized. If a neighboring coefficient is lost anyway, it is first approximated
by averaging out its available neighbors.

After the packetization, we simulated the loss of every combination of p
packets for p = 1, . . . , 4. For p = 1, . . . , 4, there are respectively 16, 120,
560 and 1820 possible combinations. The lost low frequency coefficients were
repaired with three reconstruction methods: the bilinear interpolation [3], the
interpolation based on the globally dominant correlation direction [6], and the
proposed locally adaptive method. The lost high frequency coefficients were
in all cases repaired with the same one dimensional linear filter as explained
in Sect. 21.3. For each p, we calculated the average Peak Signal to Noise
Ratio (PSNR) of the reconstructed images for each reconstruction method.
The results of this experiment are given in Table 21.1.

If we compare the three reconstruction methods, we see that our proposed
method outperforms the bilinear interpolation [3] with at least 0.5 dB and
even with more than 4 dB for the Tweety-image. If we compare our proposed
method to our previous method [6], we see that for low packet loss rates
(p = 1), there are some images (e.g., Sunset, Goldhill) where the quality
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Table 21.1. Average PSNR (dB) of the reconstructed images for p = 1, . . . , 4 lost
packets for the bilinear interpolation [3], our previous method based on the globally
dominant correlation direction [6] and the proposed method

Average PSNR for Lena

p Bilinear [3] Global [6] Proposed

1 30.58 31.10 31.43
2 27.42 27.86 28.22
3 25.49 25.87 26.26
4 24.05 24.39 24.79

Average PSNR for Goldhill

p Bilinear [3] Global [6] Proposed

1 33.65 33.91 33.96
2 30.49 30.66 30.76
3 28.54 28.65 28.80
4 27.05 27.15 27.34

Average PSNR for Tweety

p Bilinear [3] Global [6] Proposed

1 39.23 42.96 43.51
2 35.89 38.68 39.90
3 33.76 35.86 37.53
4 32.03 33.77 35.62

Average PSNR for Nike Temple

p Bilinear [3] Global [6] Proposed

1 29.56 30.81 30.99
2 26.33 27.25 27.69
3 24.34 24.99 25.62
4 22.81 23.31 24.04

Average PSNR for Sunset

p Bilinear [3] Global [6] Proposed

1 38.80 40.48 40.45
2 35.52 36.83 37.13
3 33.45 34.49 35.03
4 31.80 32.71 33.40

of the reconstructed images is similar for both reconstruction methods. On
other images (e.g., Tweety) we have an increase in PSNR of 0.5 dB. For high
packet loss rates, our proposed method outperforms our previous interpolation
technique [6] with between 0.2 and 1.85 dB.

The images used in the aforementioned experiment are all uncompressed
images. In this way, we avoid mixing compression artifacts with reconstruction
artifacts. In a real network application, compression is of course necessary to
save bandwidth. Due to the quantization step in the compression, the wavelet
coefficients are modified. As quantized coefficients may behave differently, we
performed an experiment similar to the aforementioned experiment, but now
only a fixed number of bit planes of the wavelet coefficients were transmitted.
The number of bit planes are: 7 for Lena, 8 for Goldhill, 6 for Tweety, 8 for
Nike Temple and 7 for Sunset. The results of this experiment are given in
Table 21.2.

If no packets are lost, the PSNR of the received image is equal to the PSNR
of the transmitted, compressed image. If there is packet loss, then the quality
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Table 21.2. Average PSNR (dB) of the reconstructed images for p = 1, . . . , 4 lost
packets for the bilinear interpolation [3], our previous method based on the globally
dominant correlation direction [6] and the proposed method. For these images, only
a fixed number of bit planes of the wavelet coefficients were transmitted. The number
of bit planes are: 7 for Lena, 8 for Goldhill, 6 for Tweety, 8 for Nike Temple and 7
for Sunset

Average PSNR for compressed Lena

p Bilinear [3] Global [6] Proposed

0 33.64 33.64 33.64
1 28.99 29.35 29.57
2 26.68 27.05 27.35
3 25.08 25.42 25.77
4 23.80 24.12 24.51

Average PSNR for compressed Goldhill

p Bilinear [3] Global [6] Proposed

0 36.21 36.21 36.21
1 31.89 32.06 32.09
2 29.64 29.78 29.86
3 28.05 28.15 28.28
4 26.75 26.85 27.02

Average PSNR for compressed Tweety

p Bilinear [3] Global [6] Proposed

0 34.94 34.94 34.94
1 33.66 34.41 34.40
2 32.54 33.56 33.79
3 31.49 32.56 33.10
4 30.43 31.53 32.33

Average PSNR for compressed Nike

p Bilinear [3] Global [6] Proposed

0 32.44 32.44 32.44
1 27.84 28.66 28.77
2 25.50 26.24 26.59
3 23.84 24.42 24.97
4 22.50 22.95 23.63

Average PSNR for compressed Sunset

p Bilinear [3] Global [6] Proposed

0 34.77 34.77 34.77
1 33.47 33.91 33.89
2 32.35 32.92 33.05
3 31.33 31.93 32.22
4 30.33 30.96 31.41

of the reconstructed compressed images (Table 21.2) is always lower than the
reconstructed non-compressed images (Table 21.1), as there is now a quality
degradation due to the compression as well as due to the reconstruction. The
difference between the different reconstruction methods is roughly the same
for the quantized and the non-quantized case. This means that the proposed
method will also work best in case of compression.

In this experiment, we only focussed on the quantization of the wavelet
coefficients and not on the source coding. Therefore, we can not give a reliable
compression ratio, or a reliable size of the data packets. In future work, we will
investigate a more complete compression scheme. In such a scheme it would
be possible to compare the gains of different packetization schemes in terms of
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error concealment performance against the loss in compression performance.
On the one hand, the performance of the compression algorithm is likely
to deteriorate when applied on the packets of coefficients resulting from a
dispersive packetization (because the coefficients within the same packet are
in this case less correlated). On the other hand, a dispersive packetization
facilitates and improves the error concealment (since more correctly received
neighbors of a lost coefficient are available on average).

We will then also be able to determine the optimal number of decompo-
sition levels in the wavelet transform. In the previous experiments, we used
three decomposition levels (n = 3), which seems suitable for 256×256 images.
By decreasing the number of decomposition levels, our method performs bet-
ter, but on the other hand, the compression ratio will be worse. The optimal
number of decomposition levels will be a trade off between the performance
of the error concealment and the performance of the compression scheme.

We also visually compare the proposed method with the bilinear interpola-
tion [3] and with our previous method which is based on the globally dominant
correlation direction [6]. For these examples, we have chosen a combination
of lost packets such that the resulting PSNR values are relatively close to the
average PSNR values as given in Table 21.1.

In Fig. 21.3, we show Lena with one lost packet and we show the results af-
ter reconstruction with the three interpolation methods. Figure 21.3 (a) is the
Lena-image after the loss of packet 5 (i.e., 6.25% of the coefficients lost). Fig-
ures 21.3 (b–d) are the images after reconstruction with respectively bilinear
interpolation [3], our previous method [6], and our proposed reconstruction
method. As indicated by the PSNR, the difference between Figs. 21.3 (b) and
(d) is most obvious. In the bilinear interpolation, all neighboring coefficients
get the same interpolation weight. This gives particularly bad results near
edges. This is already better in the interpolation with a dominant correlation
direction, but still, edges that do not comply with this dominant direction
may still be badly interpolated. In the proposed method, the interpolation
adapts to the local edge direction, yielding a better result. This is even more
apparent for high packet loss rates.

In Fig. 21.4, we compare the interpolation methods for a higher packet
loss rate (p = 3), for the Sunset image. Figure 21.4 (a) is the Sunset -image
after the loss of packets 4, 7 and 15 (i.e., 18.75% of the coefficients lost).
Figures 21.4 (b–d) are the images after reconstruction. The PSNR value of the
image reconstructed with our proposed method is respectively more than 1.5
and 0.5 dB higher than the images reconstructed with bilinear interpolation
[3], and with our previous method [6].

For p = 4 (i.e., 25% of the coefficients lost) we give two examples in
Figs. 21.5 and 21.6, respectively for the Tweety and the Nike Temple image.
Figure 21.5 (a) is the Tweety-image after the loss of packets 1, 8, 12, and 14.
Figure 21.6 (a) is the Nike Temple-image after the loss of packets 2, 3, 11,
and 16. Figures 21.5 (b–d) and 21.6 (b–d) are the images after reconstruction.
For these examples, the difference between the three reconstruction methods
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(a) (b) (c) (d)

Fig. 21.3. (a) Lena-image after loss of packet 5. (b) Damaged Lena-image repaired
with the bilinear interpolation [3] (PSNR = 30.88 dB). (c) Damaged Lena-image
repaired with our previous interpolation method based on the globally dominant
correlation direction [6] (PSNR = 31.59 dB). (d) Damaged Lena-image repaired
with our proposed reconstruction method (PSNR = 31.97 dB)

(a) (b) (c) (d)

Fig. 21.4. (a) Sunset-image after loss of packet 4, 7, and 15. (b) Damaged Sunset-
image repaired with the bilinear interpolation [3] (PSNR = 34.07 dB). (c) Damaged
Sunset-image repaired with our previous interpolation method based on the globally
dominant correlation direction [6] (PSNR = 35.20 dB). (d) Damaged Sunset-image
repaired with our proposed reconstruction method (PSNR = 35.74 dB)

is clearly visible: although all three methods do a good reconstruction in
the smooth areas, only the proposed method succeeds in doing a satisfactory
reconstruction of the significant edges. This is also reflected in the PSNR
values of the reconstructed images.

To show the influence of image compression, we perform the same experi-
ment as in Fig. 21.3, but now the wavelet coefficients are quantized to a fixed
number of bit planes. Figure 21.7 (a) is a compressed Lena-image where only
7 bit planes of the coefficients have been transmitted. Its PSNR is 33.64 dB.
Figure 21.7 (b) is the compressed Lena-image after the loss of packet 5 (i.e.,
6.25% of the coefficients lost). Figures 21.7 (c–e) are the images after recon-
struction. For each reconstruction method, the PSNR is about 1.9 dB lower
for the compressed image compared with the reconstruction of the uncom-
pressed image. Although the difference in PSNR between the reconstructed
images in the compressed case is a little bit smaller than in the uncompressed
case (Fig. 21.3), we can draw the same conclusions here: the proposed method
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(a) (b) (c) (d)

Fig. 21.5. (a) Tweety-image after loss of packet 1, 8, 12, and 14. (b) Damaged
Tweety-image repaired with the bilinear interpolation [3] (PSNR = 31.71 dB). (c)
Damaged Tweety-image repaired with our previous interpolation method based on
the globally dominant correlation direction [6] (PSNR = 33.55 dB). (d) Dam-
aged Tweety-image repaired with our proposed reconstruction method (PSNR =
35.50 dB)

(a) (b) (c) (d)

Fig. 21.6. (a) Nike Temple-image after loss of packet 2, 3, 11, and 16. (b) Damaged
Nike Temple-image repaired with the bilinear interpolation [3] (PSNR = 23.62 dB).
(c) Damaged Nike Temple-image repaired with our previous interpolation method
based on the globally dominant correlation direction [6] (PSNR = 24.11 dB). (d)
Damaged Nike Temple-image repaired with our proposed reconstruction method
(PSNR = 24.84 dB)

performs better than our previous method [6] which in turn performs better
than the bilinear interpolation [3].

21.5 Conclusion

In this chapter, we presented a novel locally adaptive interpolation method for
the reconstruction of lost low frequency wavelet coefficients in wavelet coded
images and video. Each lost low frequency (LLn) coefficient is interpolated
from its four neighbors. The interpolation weights are estimated from the
energy of the corresponding coefficients in the high frequency subbands. The
ratio of the energy in the HLn subband and of the energy in the LHn subband
are used as an indication for the magnitude of the interpolation weights.
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(a) (b) (c) (d) (e)

Fig. 21.7. (a) Compressed Lena-image (PSNR = 33.64 dB). (b) Compressed Lena-
image after loss of packet 5. (c) Damaged Lena-image repaired with the bilinear
interpolation [3] (PSNR = 29.18 dB). (d) Damaged Lena-image repaired with our
previous interpolation method based on the globally dominant correlation direc-
tion [6] (PSNR = 29.64 dB). (e) Damaged Lena-image repaired with our proposed
reconstruction method (PSNR = 29.91 dB)

We have evaluated our reconstruction method by simulating the loss of
every combination of one to four packets for 5 images with different content.
Compared to bilinear interpolation, our method performs up to 4.3 dB better.
Compared to the interpolation based on the globally dominant correlation
direction, our method performs up to 0.5 dB better for low packet loss rates,
and up to 1.8 dB better for high packet loss rates. These numeric results are
in accordance with the visual results.

We expect that the PSNR can increase even more by taking more high
frequency coefficients (e.g., from other LH� and HL� subbands) into account.
A better reconstruction scheme for the high frequency coefficients is also de-
sirable, as the simple one dimensional interpolation gives annoying artifacts
for high packet loss rates.

Acknowledgments.
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Summary. In this work, we present a new content-based watermarking approach
that uses geometric warping to embed watermarks with high robustness to strong
lossy compression. The issue of hard decisions related to content-based watermarking
is discussed and it is explained why hard decisions can involve bit errors in the wa-
termark extraction process. This work contains a solution to prevent hard decisions
increasing the watermark performance. Therefore, we introduce a new feature-based
image segmentation process with high robustness to lossy compression. On the basis
of the segmentation, a watermark approach is proposed. Further, a secret key can be
used to prevent unauthorized access to the watermark. The watermark extraction
process does not need the original image. Our analyses of the watermark approach
confirm the expected high robustness to strong lossy compression.

22.1 Introduction

Digital data techniques more and more replace analogue data techniques. The
advantages are obviously. Digital data can be copied, edited and transferred
without high efforts. However, at the same time it is very simple to make
illegal copies and to manipulate digital data. Digital watermarking [1] offers
contributions in protecting the authenticity of the data and the copyrights of
the authors.
One property of digital watermarks is the robustness describing the possibil-
ity to extract the watermark after permitted or malicious modification of the
digital data. There are watermark methods that achieve robustness to dif-
ferent attacks such as cropping, rotating, scaling, compression and noise ([2]
gives an overview). Robustness to many attacks can be important. However,
mostly these watermarks are not robust to strong lossy compression or con-
tain only a low amount of information (watermark capacity). High robustness
and a suitable capacity can be achieved using content-based watermarking
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approaches [3]. Because compression algorithms try to maintain the content,
the watermarks are embedded into it. The challenge of content based water-
marking is to find a suitable definition of content and to solve the problem of
hard decisions.
In this paper, we present a new content-based watermarking approach basing
on geometric warping. Firstly, the basic idea of watermarking by geometric
warping is described. Afterwards, the issue of content-based watermarking
related to hard decisions is discussed. In the next section, the basic idea of
content-based watermarking without hard decisions is explained. Therefore,
different types of image features are introduced which are used for a feature-
based segmentation and the embedding and extraction process. Finally, the
results are presented including analyses of the watermark robustness to strong
lossy compression.

22.2 Geometric Warping Watermarking

Generally, the performance of a watermark is defined by the watermark prop-
erties capacity, robustness and visibility. These properties depend on each
other. Many watermarking methods achieve a low watermark visibility by
changing the gray values of images only slightly. Some of them are SS (Spread
Spectrum) [4], LSB (Least Significant Bit) [5] and DCT transformation based
Quantisation Index Modulation watermarking approaches [6]. An example
of Spread Spectrum watermarking is shown in Figure 22.1 a) and b). How-
ever, the approaches of changing pixels only slightly to embed the watermark
compete with lossy compression algorithms. To achieve robustness to lossy
compression the watermark capacity has to be reduced. Hence, it is difficulty
to embed a watermark especially with robustness to strong lossy compression
and a suitable capacity at the same time.

Fig. 22.1. Image ”Mandrill” with SS watermarking a), corresponding difference
image b), warped image ”Mandrill” c) and corresponding difference image d).

• Changing the position of object borders of an image results in high differ-
ence values (see Figure 22.1 c) and d)
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• Compression algorithms try to change gray values only slightly (because
they are PSNR-optimized)

• Hence, compression algorithms try to maintain the position of object bor-
ders

• To embed the watermark, the position of object borders is changed by
warping

• The watermark information is contained in the position of object borders
and robust to strong lossy compression

A more detailed explanation can be found in [7]. Other geometric warping
based watermarking approaches are given in [8] and [9].

22.3 Issue of Hard Decisions

Geometric warping based watermarking is content-based watermarking. The
content can be understood as perceptually significant features in the data.
The content is changed to embed the watermark with robustness to lossy
compression. However, we can’t embed a watermark if there is no, for the
watermark method, recognizable content. Hence, to embed the watermark we
have to decide what and where the content of an image is. For the latter,
image segmentation is necessary.
Maes et al. propose in [8] a zero-bit [10] watermarking approach. They take the
complete image to embed a watermark without any bit information. Hence,
they need no segmentation. In [9], we propose a multi-bit video watermarking
approach. The video is divided into two groups of blocks. In blocks which have
a suitable content for watermarking and blocks without a suitable content.
The watermark bits are embedded only into the suitable blocks. To extract
the watermark after strong lossy compression the two groups of blocks have
to be reconstructed.
The issue of hard decision in content-based watermarking is to decide whether
an image region, for example a block of a block-based watermarking approach,
is suitable for watermarking or not. Using this hard decision involves the prob-
ability of fail decisions after lossy compression. A fail decision can involve a
watermark bit error or completely destroy the watermark.

Fig. 22.2. Principle of failed hard decision.
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A possibility to solve the problem of fail decision is to use error correction
codes. Common error correction is designed to correct only substitution er-
rors. The fail decisions involve insertions (negative fail decisions) and deletions
(positive fail decisions). In [11], Schlauweg et al presented a coding technique
that is also able to correct insertion and deletion errors.
In [9], we use a pre-distortion of the blocks to prevent fail decisions. A block-
feature combined with a threshold t is used to decide whether a block is
suitable for watermarking or not. To reduce the probability of fail decisions,
blocks with a value of the feature near the threshold are pre-distorted. The
process changes the blocks in a way that the new value of the feature has a
higher distance to the threshold t. After pre-distortion there is a gap in the
feature-value distribution.
The problem of hard decision can be solved on several ways. However, every
solution has disadvantages. Whereas the use of error correction codes reduces
the watermark capacity, creating a gap requires a pre-distortion and increases
the watermark visibility. The advantage of a content-based watermarking ap-
proach without hard decisions is an increased performance of the watermark.
In the following sections, we propose a multi-bit geometric warping based
watermarking method without hard decisions.

22.4 A Geometric Warping Watermark Approach
Without Hard Decisions

22.4.1 Basic Idea

Content-based watermarking uses features which describe the content of an
image. For content-based watermarking without hard decision we propose to
use two different types of features.
The first feature describes the type of the content (Locator-Feature). For ex-
ample, the Locator-Feature could describe the strength of the edges inside a
block. This feature is used to find content which is suitable for watermarking.
The second feature describes the content (Carrier-Feature). For example, the
Carrier -Feature could describe the position of the edge inside a block.

Fig. 22.3. Example with a) different content type (Locator-Feature - edge strength)
and b) different content (Carrier-Feature - edge position).

To embed the watermark, the Locator-Feature is used to find content which
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has a suitable Carrier-Feature. The embedding process changes the content
without changing the type of content. Starting from these assumptions we
can create a content-based geometric warping watermarking approach with-
out hard decisions.
We propose to use a Locator-Feature-based segmentation process to get only
suitable blocks respectively segments for watermarking. A hard decision is not
necessary. The image can be divided into segments even if the content is uni-
form or non-uniform (see Figure 22.4). The Carrier-Feature of each segment
is used to carry one watermark bit. The segmentation can be reconstructed
after strong lossy compression if both features are robust to strong lossy com-
pression.

Fig. 22.4. Simplified principle of Locator-Feature based image segmentation. Each
of the four segments contains the same ”amount” of content. It doesn’t matter if
the content is uniform a) or non-uniform b).

22.4.2 Locator- and Carrier Feature

In [9], we propose the NCG (Normed Centre of Gravity). The NCG is a block-
based statistic. It describes the strength and position of the gravity centre of
a block in a block border independent way. To compute the NCG of a block
with size nxn, the mean values of all columns and rows yielding the vectors
mx and my are used (see Figure 22.5). Both vectors are used to compute the
2-dimensional vector vk (k = x or y):

vk =

⎛⎜⎜⎜⎝
n∑
i=1

mk(i) · cos
(
π

n
+

(
(i− 1) ·

(
2 · π
n

)))
n∑
i=1

mk(i) · sin
(
π

n
+

(
(i− 1) ·

(
2 · π
n

)))
⎞⎟⎟⎟⎠ (22.1)

For both vectors, angles Θk are computed. These values are used to compute
the x,y-coordinates of the NCG:

x =
n ·Θx
2 · π y =

n ·Θy
2 · π (22.2)
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Locator-Feature:

The strength L of the NCG is used as Locator-Feature. It bases on the vector
length Lk of vk:

L =
√

L2
x + L2

y (22.3)

Carrier-Feature:

The NCG x,y-coordiantes are mapped on a self adapting quantization lattice.
The resulting value s is very robust to lossy compression. For a detailed de-
scription of this process, see [9]. This value s is used as Carrier-Feature.

Fig. 22.5. Overview of the Locator- and Carrier-Feature calculation scheme.

To realize a Locator-Feature based image segmentation, the NCG has to be
computed for each pixel. Therefore, the pixels surrounding the current pixels
are used to build a block. The NCG of the block represents the NCG of the
current pixel.
Each pixel delivers a Locator-Feature and a Carrier-Feature. The results are
the Locator-Feature matrix LFM and the Carrier-Feature matrix CFM . For
example, see Figure 22.6.



22 Content-Based Watermarking by Geometric Warping and ... 261

Fig. 22.6. Example of the NCG Locator- and Carrier-Feature matrices.

22.4.3 Locator-Feature-Based Image Segmentation

The aim of Locator-Feature-based image segmentation is a uniform qualifica-
tion of each segment to carry a watermark bit. It is necessary to reconstruct
the segments even after strong lossy compression. Hence, the segments respec-
tively the segmentation process has to be robust to strong lossy compression.
A higher value L (Locator-Feature) yields a higher robustness of the value
s (Carrier-Feature). Hence, one segment needs either many pixels with low
values L or only some pixels with high values L to carry a watermark bit
with the same robustness to lossy compression. Because of this, we propose to
divide the image into segments where the sum of the LFM elements in each
segment is the same. Therefore, following algorithm is used:

1. The columns of LFM are averaged.
2. The resulting vector is divided into a segments whereby the sum of the

vector elements in each segment is equal.
3. Each vector segment represents a set of columns in LFM .
4. Each set of columns is divided into b segments by averaging the rows

and dividing the resulting vector into b segments whereby the sum of the
vector elements in each segment is equal.

5. The results are a ·b segments where the sum of the LFM elements in each
segment is the same (see Figure 22.7).

The robustness of the segments is analyzed by using JPEG and JPEG2000
(JasPer-Codec). As shown in Figure 22.8, the mean error of the segmentation
is relatively low also after strong lossy compression. The maximal mean error
of about 10% means that 90% of a segment respectively 90% of the location
of the Carrier-Feature can be reconstructed.
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Fig. 22.7. Example of Locator-Feature-based segmentation with a) segments of
original image ”Lena” and b) segmentation after strong lossy compression (JPEG
with quality factor 15).

Fig. 22.8. Robustness of the segments to a) JPEG and b) JPEG2000 compression.

22.5 Watermark Embedding and Extracting

To embed the watermark bit, matrix LFM , CFM and a pseudo random bi-
nary pattern BP are used. The binary pattern has the same size as matrices
LFM and CFM and can be created by a known algorithm or a secret key.
Hence, the watermark can be protected against unauthorized access. For ex-
ample, see Figure 22.9. Matrix LFM is normalized to a value range between
0 and 1 and element wise multiplied with matrix CFM (Figure 22.9 d)).

LCM = LFMnormalized · CFM (22.4)

The resulting matrix LCM is very robust to lossy compression. To create a
relationship between the elements of matrix LCM and their spatial positions
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matrix LCM is element wise multiplied with matrix BP (Figure 22.9 e)).
Result is matrix LCBM .

LCBM = LCM ·BP (22.5)

Fig. 22.9. Segment of a) Locator-Feature matrix, b) Carrier-Feature matrix, c)
binary pattern, robust matrix LCM d) and of LCBM e).

The elements of LCM are maintained in LCBM where the equivalent ele-
ments of BP have the value one. The elements of LCM are set to zero in
LCBM where the equivalent elements of BP have the value zero. The rela-
tionship between segment k of LCBM and segment k of LCM is the scalar
SRk.

SRk =

m∑
i=1

n∑
j=1

lcbmki,j

m∑
i=1

n∑
j=1

lcmki,j

(22.6)

SRk is the basis of the embedding process and has a value range between 0 and
1. To embed a bit value ’0’ respectively ’1’ the image is changed by geometric
warping so that 0 <= SRk < 0.5 respectively 0.5 <= SRk <= 1. Analysis
of the SRk robustness to lossy compression shows that SRk is suitable to
carry the watermark. As shown in Figure 22.10 the MAE (Mean Absolute
Error) is very low. This error analysis considers already the error caused by
the Locator-Feature based segmentation process.
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Fig. 22.10. Robustness of SRk to a) JPEG and b) JPEG2000 compression.

To embed the watermark bits, the image has to be warped. Therefore, a warp-
ing matrix is computed in a way that the new resulting SRk have the wanted
values. For example, see Figure 22.11.

Fig. 22.11. Example of warping matrix gained by factor 10 for a better visualiza-
tion.

The embedding process is computationally expensive. The largest amount of
computing power is used to get the warping matrix. However, the watermark-
ing extraction process doesn’t need the warping matrix. Hence, extracting the
watermark bits needs less computing power. The extraction process requires
the matrices LFM , CFM and BP to realize the segmentation process and to
compute SR for each segment. These values can be computed directly using
the watermarked image. The original image is not needed. The watermark bit
values ’0’ or ’1’ can be directly computed using the single SRk.

22.6 Results

The watermarking approach was tested for different gray scaled images (Mis-
celaneous database) with the size of 512x512 pixels. A maximal warping
strength of one was used. Hence, the spatial position of a pixel is moved
less than one by the warping process. The number of embedded bits respec-
tively the number of segments is 16, 25 and 36. An example can be seen in
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Figure 22.12.

Fig. 22.12. Watermarked image ”Lena” a) and difference image between water-
marked image and original b). The warping strength is gained by factor 3 for a
better visualization.

The results of the robustness analysis are shown in Figure 22.13. The ro-
bustness analysis considers the robustness of the segmentation process and
the robustness of SRk. As expected, the watermark is robust to strong lossy
compression. On a JPEG compression with quality factor 1, 99.45% of 16
embedded bits can be correct extracted. On a JPEG2000 compression with a
resulting bit rate of 0.08 Bit/Pixel, 99.96% of 16 embedded bits can be correct
extracted.
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Fig. 22.13. Bit Error Rate (BER) of the embedded watermark bits after lossy
compression with a) JPEG compression and b) JPEG2000 compression.

22.7 Conclusion

In this work, we propose a content-based watermarking approach basing on
geometric warping. The suitability of geometric warping based watermarking
approaches to achieve high watermark robustness to lossy compression is ex-
plained. The issue of hard decisions related to content-based watermarking
is discussed. We propose a solution to prevent hard decisions increasing the
watermark efficiency. Therefore, we introduce two new types of features and a
feature-based segmentation process. The robustness of the segmentation pro-
cess is analysed and presented. The proposed watermarking method offers the
possibility to protect the watermark against unauthorized access. The water-
mark extraction process does not need the original image. Analyses confirm
the expected high robustness to lossy compression.
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Summary. Steganalysis is the reverse process of steganography. The goal of ste-
ganalysis is to detect, as reliably as possible, the presence of hidden data. Software-
based steganolytic systems often fail to keep up with high-speed network through-
puts. In this chapter, we present the design of a system that automatically detects
steg-information in real-time. In this system, RS steganalytic algorithm is parallel
implemented with a three-stage pipeline based on FPGA. Experiment results show
that this system can achieve very high throughputs (2.5Gbps) and deal with a far
larger amount of traffic than software-based approaches.

Key words: steganalysis, FPGA, RS, steganography, reconfigurable computing

23.1 Introduction

Steganography is the art of secret communication. We can use digital images,
videos, audios, and other computer files that contain irrelevant or redundant
information as covers or carriers to hide secret messages [1]. Steganography has
made positive contributions to the field of information security. Many stegano-
graphic software and watermarking algorithms can be downloaded freely from
the Internet. People might use these tools to communicate secretly with each
other. However, it can also be employed by criminals - terrorists can use
steganography to transmit secret messages on internet or launch terrorist at-
tacks.

Steganalysis is the reverse process of steganography. The goal of steganal-
ysis is to detect, as reliably as possible, the presence of hidden data. On-line
real time detection is an effective way to detect hidden data transmitted on
internet. But due to huge network traffic, the throughput of existing solutions
cannot satisfy the requirements of on-line detection.

In this chapter, we place a strong focus on high throughput implemen-
tation of steganalytic algorithm. The architecture of an FPGA based LSB
steganography detector is introduced. It uses RS [2] steganalytic algorithm to
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detect information hidden in color or gray-scale images. The potential advan-
tages of using FPGA to implement steganalytic algorithm include:
Algorithm Agility This term refers to the switching of steganalytic algo-
rithms during operation. In a real network environment, the hidden messages
may be embedded in the media by various steganographic programs. It re-
quires the detector can deal with multiple steganographic technologies, and
future extensions should be possible. Whereas algorithm agility is costly with
traditional hardware, FPGAs can be reprogrammed on-the-fly. And it is per-
ceivable that fielded devices are upgraded with a new steganalytic algorithm
which does not exist (or was not standardized) at design time.
Throughput Although typically slower than ASIC implementations, FPGA
implementations have the potential of running substantially faster than soft-
ware implementations.
Cost Efficiency The time and costs for developing an FPGA implementa-
tion of a given algorithm are much lower than for an ASIC implementation.
(However, for high-volume applications, ASIC solutions usually become the
more cost-efficient choice.)

23.1.1 Our Contribution

The primary contribution of our work has been to first implement RS ste-
ganalytic algorithm on reconfigurable hardware. In order to achieve high
throughput, we propose a completely new reconfigurable staganography de-
tector architecture in which the RS steganalytic algorithm is implemented in
full parallel mode. Some critical operations in the algorithm are carried out
by lookup table operation to accelerate the processing speed. To the best of
our knowledge, there’s no hardware implementation of steganalytic algorithm
up to now.

23.1.2 Organization of the Chapter

In the rest of this chapter, Section 23.2 provides the background of our work in
term of an introduction to the RS steganalytic algorithm and recent previous
work on acceleration of LSB steganography detection based on various tech-
nologies. Section 23.3 contain the details of the system architecture. Section
23.4 presents the implementation results. At last, in Section 23.5, we conclude
the whole chapter.

23.2 Background and Related Work

23.2.1 RS Steganalytic Algorithm

RS steganalytic algorithm is proposed by Fridrich, et al [2]-[4]. The stego-
detection method starts with dividing the image into disjoint groups of n
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adjacent pixels (x1, . . . , xn). For example, we can choose groups of n = 4
consecutive pixels in a row. A discrimination function f is defined and each
pixel group G is assigned a real number f (x1, . . . , xn)∈ R. The purpose of
the discrimination function is to quantify the smoothness or ”regularity” of
the group of pixels G. The noisier the group of pixels G = (x1, . . . , xn) is,
the larger the value of the discrimination function becomes. So, the function
f can be defined as the ’variation’ of the group of pixels G:

f(x1, . . . , xn) =
n−1∑
i=1

| xi+1 − xi | . (23.1)

Then an invertible operation F on pixel groups called ”flipping” is defined as
a permutation of gray levels that consists of two cycles. Thus, F(F(x)) = x for
each pixel x. The permutation F1: 0 ↔ 1, 2 ↔ 3, . . . , 254 ↔ 255 corresponds
to flipping (negating) the LSB of each gray level. And the permutation F−1:
-1 ↔ 0, 1 ↔ 2, 3 ↔ 4, . . . , 253 ↔ 254, 255 ↔ 256, or defined as

F−1(x) = F1(x+1)− 1, (23.2)

is called shifted LSB flipping. For completeness, another flipping operation
called identity permutation is defined as F0: F0(x) = x. Using the discrimina-
tion function f and the flipping operation F, three types of pixel groups R, S
and U are defined:

RegularGroups : G ∈ R⇔ f(F(G)) > F(G)

SingularGroups : G ∈ S⇔ f(F(G)) < F(G)

UnusableGroups : G ∈ U⇔ f(F(G)) = F(G),

where F(G)= (F(x1), . . . , F(xn)). The assignment of flipping to pixels can
be captured with a mask M, which is an n tuple with values -1, 0, and 1. The
flipped group FM (G) is defined as (FM(1)(x1), FM(2)(x2), . . . , FM(n)(xn)).
The number of regular and singular groups for mask M are denoted as RM
and SM respectively. Similarly, the number of regular and singular groups of
negative mask -M are denoted as R−M and S−M . In a typical image, the
expected value of RM is equal to that of R−M , and the same is true for SM
and S−M :

RM ∼= R−M , SM ∼= S−M (23.3)

But after randomizing the LSB plane, the above equations are violated. The
principle of the RS method is to estimate the four values: RM , R−M , SM and
S−M .

23.2.2 Previous Work in Steganalytic Algorithm Implementation

In the past several years, great achievements have been made in research of ste-
analysis. However, most of the researchers focused on the detection accuracy
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and gave little thought to the throughput issue. Lang, Xia and Zhi, et al [5] im-
plemented several steganalytic algorithms and analyzed their performance. In
their paper, the confidence interval of RS method was presented, but no data
about the algorithm throughput was given. Zhang and Ping [6] implemented
RS and Difference Histogram (DH) based steganalytic algorithms by Visual
C++ on an Intel Pentium III 600MHz machine. The throughput rate of RS
and DH algorithms were about 550KB/s and 4MB/s, respectively. To achieve
higher processing throughput, computer clusters have been proposed to of-
fload the workload of a single computer. Andrew [7] employed a distributed
network of computers to evaluate ”Pairs” and ”RS” steganalytic algorithms
and compared their performance. The cost of the computer cluster remains
high, however, because it requires multiple processors, a distribute network
and a clustered management system. In this chapter, we present a solution to
implement steganalysis completely in reconfigurable hardware. There’s so far
no literature about this method.

23.3 Proposed FPGA Based RS LSB Steganography
Detector

23.3.1 System Architecture

The architecture of the steganography detector is shown in Fig. 1. The whole
detector consists of four components: address generator (AG), block mem-
ory, reconfigurable steganography detect engine (RSDE), and main micro-
controller (MCU). AG is responsible for calculating the addresses which are
used to access the block memory. It supports several data scan patterns to
organize the pixel group G which is defined in RS algorithm (See Section
23.2.1). RSDE is the computing kernel of this detector, where RS algorithm is
implemented with a 3-stage pipeline. The block memory is a dual-port SRAM
which consists of two memory banks. It is used for storage of image pixels,
and lookup tables. The data width of block memory is 16 bits. The MCU is
an embedded microprocessor, such as MicroBlaze in Xilinx FPGA, which is
in charge of harmonizing and commanding different parts to work.

23.3.2 Address Generator

The reconfigurable steganography detect engine (RSDE) is driven by data
stream instead of instruction stream. Address generator (AG) is responsible
for organizing data and feeding them to RSDE. The pixels of a color image
that are stored in the block memory form a 3-dimensional data space. At run
time, an address stream is generated by AG and the accessed data are passed
from the block memory to RSDE. This principle is derived from the fact that
in RS algorithm, the image must firstly be divided into several pixel groups,
but the division mode is not fixed, so several addressing modes are designed



23 Hardware Based Steganalysis 273

Address� Data�

Reconfigurable�
Steganography Detector�

Address�
Generator�

(AG)�

Rconfigurable�
Steganogrphy�
Detect Engine�

(RSDE)�

Block�
Memory�

MCU�

Fig. 23.1. System architecture of the proposed LSB steganography detector.

for various needs. In our design, the number of pixels per group is 4 and the
data bus width is 32 bits. Two addressing modes have been so far supported
by the AG - row-based scan mode and 2x2 array scan mode which are shown
in Fig. 2.

a). Row based scan mode� b). 2x2 array scan mode�

x�

y�

x�

y�

z� z�

Fig. 23.2. Two scan modes supported by AG.

We have limited our first implementation to an AG which can handle
regular mappings in 3 dimensions. The AG can also handle 2-dimensional
mappings which appear in gray scale images. To generate an address stream
according to a 1,2 and 3- dimensional data space, we defined a parameters set
which is called address parameter vector (APV). It consists of five parameters:

• B : Base address - the first address which is sent to the memory.
• Nx: The number of addresses in each line in the data space.
• Ny: The number of lines in the y-direction in the data space.
• Nz: The number of planes in the z-direction, if the set comprises 3 dimen-

sions. For color images, it is a constant of 3.
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• M : Address generation mode corresponding to the data scan mode shown
in Fig. 23.2.

Fig. 23.3. shows the block diagram of the AG. The five registers hold the
APV for address calculation. At runtime, Address Calculation Unit (ACU)
is responsible for calculating the address according to the scan mode. AG
gives two outputs - Addr A and Addr B, which are the addresses for the two
memory banks, respectively. In row-based scan mode, AG firstly generates
an address stream for every four pixels on R plane, then followed by G and
B planes. While in 2x2 scan mode, the pixels are stored in the two memory
banks according to their line number (odd or even) and AG firstly generate an
address stream for every two pixels on R plane for both memory bank A and
B simultaneously, then followed by G and B planes. Currently, in our design,
the width of address bus is 22 bits.

Addr A� Addr B�

Address Calculation Unit�
(ACU)�

B� N�x� N�y� N�
z�

M�

Fig. 23.3. Block diagram of address generator

23.3.3 Reconfigurable Steganography Detect Engine

Fig. 23.4 depicts the architecture of RSDE. The input pixel groups first pass
through the flipping module. In RS algorithm, there are three flipping opera-
tions which are defined as F1, F0 and F−1. F0 is an identity permutation which
does not change the pixel value. F1 can be realized by exclusive-ORing the
least significant bit of the data with 1. If F−1 is implemented in terms of equa-
tion (23.2), it will require two add (subtract) and one exclusive-OR operations.
This solution seems to be more time-consuming compared with F1 which needs
only one exclusive-OR operation. So we use table lookup operation instead of
calculation of equation (23.2) to realize F−1. When implementing the circuit
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on a Xilinx FPGA, the table is implemented by configuring dual-port, on-chip
block RAM as an array of memory locations. Each of the memories can afford
two read operations every clock cycle. We built two identical tables for the
four shifted flipping operations (F−1 flipping) that perform simultaneously,
each table contains 256 bytes.

To achieve high performance, the whole circuit is pipelined with three
stages: flipping operation stage, discrimination function stage and RS value
calculation stage. They correspond to the stage 1, 2, 3 in Fig. 23.4, respec-
tively. In stage 1, all three flipping operations are carried out in full parallel
mode. The results are stored in registers and transmitted to stage 2 in next
clock cycle. Stage 2 performs discrimination value calculation. The multiplex-
ers select the output data generated by flipping module and send them to the
discrimination function module. The selection of output depends on the mask
signal M, which is an n-tuple with values 1, 0, -1. In our design, the value of
n is 4 and we use two bits to encode each member in the tuple: ’00’ and ’11’
represent the value of ’1’ and ’-1’ respectively, and both ’01’ and ’10’ represent
the value ’0’ in M. With this encode mode, we can easily get -M from M by
an inverter (see Fig. 23.4.). Fig. 23.5 shows the structure of discrimination
function module. It consists of one adder, three subtracters and several multi-
plexers and comparators. This module calculates the discrimination function
value of the pixels according to equation (23.1). The RS statistic values are
computed in stage 3. In Fig. 23.4, rM , r−M , sM and s−M are four counters
that calculate and store the value of RM , R−M , SM and S−M , respectively.

23.4 Implementation Results

We used Xilinx VirtexII XC2V3000 which contains 3584 CLBs (Configurable
Logic Blocks) as our target device [8]. The steganography detecting system
was designed by Verilog HDL. ModelSim 6.0 SE by Mentor Graphics was
used to perform behavioral and timing simulations for the whole system. The
simulations verified both the functionality and the ability to operate at the
designated clock frequencies for the implementations. The synthesis tool was
Xilinx ISE 7.1. To show the performance, we list the synthesis results of RSDE
(not including the microprocessor) in Table 23.1. Throughput is calculated as:

Throughput = 32Bits ∗ ClockFrequency (23.4)

The number of CLBs required as well as the maximum operating frequency
for the implementation was obtained from the Xilinx report files. Note that the
Xilinx tools assume the absolute worst possible operating conditions highest
possible operating temperature, lowest possible supply voltage, and worst-
case fabrication tolerance for the speed grade of the FPGA [9]. As a result, it
is common for actual implementations to achieve slightly better performance
results than those specified in the Xilinx report files.
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Fig. 23.4. The architecture of RSDE.

We chose the 1096 pictures in CorelDRAW 10 distribution as our experi-
mental image library. A series of stego-inforamtioin was created from the origi-

Table 23.1. Synthesis results of RSDE.

Compile Time 2.63s
Number of Slices 263

Number of Slice Flip Flops 211
Number of 4 input LUTs 499
Number of bonded IOBs 171

Number of BRAMs 2
Clock Frequency 78.775MHZ

Throughput 2.52Gbits/s
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Fig. 23.5. The structure of discrimination function module.
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Fig. 23.6. Performance comparison between FPGA and software method.

nal image by randomizing the LSBs of 0 - 95% pixels in 10% - 15% increments.
Groups of 2x2 pixels with the mask [1, 0, 0, 1] were used in our experiment.
The simulation results were consistent with [2]-[3]. To compare performance,
we also implemented RS algorithm in software. The program was compiled by
Microsoft Visual C++ 6.0. The experiment platform is an AMD Athlon XP
running Microsoft Windows XP professional. The CPU clock rate is 1.5GHz
and the main memory is 512MB. The average throughput is 18.94Mb/s. Fig.
23.6 shows the comparison between these two methods ( FPGA and software).
The results show that the performance of FPGA solution is far higher (about
130 times) than software solution.
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23.5 Conclusions

In this chapter, the design of a system for LSB steganography detection is pre-
sented. In this system, RS steganalysis algorithm is parallel implemented with
a three-stage pipeline based on Xilinx Virtex II FPGA. Simulation and synthe-
sis results show that the system is capable of achieving very high throughputs
(about 2.5Gbps). Since we exploit the parallelism afforded by hardware, the
system is able to deal with a far larger amount of traffic than software based
approaches.

As future work, the hardware detector can be enhanced further to achieve
processing of data with even higher throughput. And we also plan to integrate
more steganolytic algorithms into our detecting system to improve the system
ability.
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Summary. This paper deals with esophageal speech, which is a voice of substitution
used by alaryngeal persons in order to be able to communicate with others. This
voice, characterized by a low intensity and poor intelligibility, is hard to understand.
In this paper, we propose ideas to enhance this kind of voice. More precisely, we
enhance the source excitation signal and the formant structure of the speech vocal
track. We modify pitch values by those of natural speech and we replace the source
by a synthetic one based on LF model. We also enhance the formant structure by
enlarging formant bandwidth and we amplify their amplitudes without increasing the
background noise. Then, we englobe all modification in the same scheme including
all improvements.

Key words: Esophageal speech, Enhancement, Pitch extraction, Formant pattern.

24.1 Introduction

For some persons suffering from the cancer of larynx, it is necessary to pro-
ceed the larynx ablation so that they will loose their voice and and will not be
able to speak. The medical staff invented some elementary prothesis to per-
mit to these persons to communicate with others. The esophageal speech, an
alternative solution having the advantage of not using any artificial machine,
is the most naturel approach. It consist on injecting air into the esophagus
extremity. The vibration, usually created in the vocal cords during the natural
speech, is now created in the esophagus extremity. This esophageal voice is
very noisy and has low intensity and poor intelligibility.

This paper deals with esophageal voice to make it more comprehensible
and less noisy. In literature, there are some works which deal with this prob-
lem. we relate for example works using pattern recognition techniques [1],
speech based filtering [2, 3],...

In this paper, we present a different approach to make the esophageal voice
more understood and enjoyable with more intensity. According to the natural
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speech model, we will first propose to enhance separately the two main signals
characterizing any speech which are the excitation signal and the vocal track
signal, defined by its formantic structure. Next, we combine the improvement
in different manners in order to obtain a global enhanced speech signal.

This paper is organized as follows. In section 2, we will give the proposed
solution flowchart and its main ideas. In section 3 (resp. section 4), we will
develop the approach for source excitation (resp. vocal track) signal improve-
ment. In section 5, we will present the result we get.

24.2 Synoptic of the solution

Our method in analyzing esophageal speech is based on straightforward
source and formant analysis/synthesis method. In fact, before enhancing the
esophageal speech, it is necessary to extract its essential components: the exci-
tation signal and the vocal track signal and then modify their characteristics.
The basic scheme is shown in figure 24.1.

Linear Prediction
analysis

Formant extraction Pitch extraction

��

Pitch matching

�

Source synthesis

�

Bandwidth
enlarging

�

��
��

���

Noise reduction

�

�

�

�

+

Input signal

Output signal

Excitation signalVocal track signal

Fig. 24.1. Synoptic of the proposed solution
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The input signal is sampled at 16 Khz and decomposed into 30 ms frames.
Each frame is divided in two main signals: the excitation signal and the vocal
track signal through linear predicio analysis of order N=10. Each subsignal
is treated separately. Each excitation frame is also classified as voiced or un-
voiced frames in order to calculate pitch value. The unvoiced frame is un-
touchable and will be synthesized at the end. An auto-correlation based pitch
analysis is performed. Pitch values are adjusted and then used to generate
the synthetic excitation signal. On the other hand, the vocal track signal is
analyzed in order to calculate formant frenquencies, bandwitdhs and energy.
Formant bandwidths are enlarged by a perceptual filtering which will be de-
scribed later. As a consequence, the hole signal is amplified. The last step is
to merge the enhanced signals to create a enhanced esophageal speech.

24.3 The Source enhancement

The speech takes form at the excitation source. So, the speech enhancement
begins by the excitation signal enhancement. For unvoiced frames,we propose
the use of the classical random white gaussien source. In case of voiced frames,
we propose the following procedure based on pitch calculas, pitch matching
and Liljencrants-Fants source synthesis.

24.3.1 Pitch extraction

Since esophageal speech source is different from natural speech source, it is
obvious that any technique of natural pitch extraction does not work, that’s
why we adapt a natural speech classical technique to esophageal speech.
In this paper, we propose to adapt the Modified Auto-Correlation Method
(MACM), creating the Esophageal Voice-Modified Auto-Correlation Method
(EV-MACM). To attend this gate, we add three criteria for the decision of
voiced/unvoiced decision. They are the zero crossing rate, the frame energy
and the Bindex. It is the ratio between high frequency energy and low fre-
quency energy. In case of voiced frames, there is a pic of energy in the low
frequency. So that the Bindex is high.

The flowchart of the EV-MACM is shown in the figure24.2. After the
calculas of the three criteria, we decide wether the frame is voiced or not.

The figure 24.3 illustrates and compares pitch values of natural speech (a)
and esophageal speech (b) for the french sequence ”aoa”. We observe that the
esophageal pitch is lower than the natural one. In fact, the esophageal pitch
is generally between 50 Hz and 150 Hz (24.3) whereas natural pitch can reach
300 Hz. So, a first step of enhancement is to replace the esophageal pitch with
the naturel pitch.
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Fig. 24.2. EV-MACM flowchart.

a b

Fig. 24.3. Comparison between pitch values for natural (a) and esophageal (b)
speech for the sequence ”aoa”

24.3.2 Natural pitch and esophageal pitch matching

To be able to match pitch values, it is necessary to identify the treated
phoneme. By analyzing pitch values of different esophageal phonemes, we
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notice that they have the same range of pitch values. We hence propose to
add the two formant values F1 and F2 as criteria to identify the analyzed
phoneme. As illustration, the table 24.1 resumes formant mean values for
french vowels. These results are obtained with a long training database.

Table 24.1. Formant and pitch values for french vowels.

a o u i y

F0(natural) 85 75 110 110 90
F0(esophageal) 50..140 50..120 50..140 50..140 50..140
F1 1000 500 320 320 320
F2 1400 800 3200 1650 1800

Once the phoneme identified, we replace the pitch already calculate by the
value of the same phoneme pitch in the natural voice. This is what is called
matching. By this way, the pitch values in the figure 24.3.b will be similar to
the pitch outline of 24.3.a. These new values of the pitch will be used for the
source synthesis.

24.3.3 Source synthesis

The natural voiced speech source signal is perfectly represented by the
Liljencrants-Fants model[4] which is the most used. For this reason, we choose
it to synthesis the esophageal source’s signal. For the unvoiced frame, w use
a white gaussian noise signal.

Moreover, as it known, the esophageal speech is characterized with a low
intensity. So, we propose to amplify the excitation signal by multiplying its
amplitude y a factor α. After intensive test, we choose α = 1.2. Figure 24.4
shows the original (top figure) and the synthesized (bottom figure) excitation
signal for the french sequence ”aoa”. Original source signal is caracterized
y his large dynamics, without any noticed periodicity. However, synthesised
source represent a curve caracterized by low dynamics and a regular form
which is our main goal. Indead, we seek to construct a pariodic source signal
with a natural pitch.

In term of perceptual listening quality, we notice an improvement of the
esophageal speech mainly during vowels prononciation which become more
distinguishable. Nevertheless, the perception of this improvement needs a lot
of concentration during listening. We move now to the second part of the
enhancement which deals with the vocal track enhancement.
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Fig. 24.4. Original and synthesized source signal.

24.4 Formantic structure enhancement

24.4.1 Bandwidth expansion

The vocal track signal is characterized by its formants and a formant analysis
will guide us to vocal track enhancement. First, we extract the formant and
their related bandwidth according to the technique illustrated on the flowchart
24.5.

Then, we compare the values of the natural formants and the esophageal
formant. We observe that the frequency of the esophageal formant and the
natural formant have the same range of values. However, when we focus on
the bandwidth of formant, we remark that the natural bandwidth are larger
than the esophageal bandwidths. The figure 24.6 shows the difference. Hence,
a first idea of enhancement consist on enlarging the bandwidths. That’s why,
we propose the following approach. The vocal track are modelled by a cascade
of second order resonator whose transmittance is described by:

W (z) =
σ

A(z)
; . (24.1)

where σ is the amplitude parameter, A(z) is a plolynomial discribing the z
transform of the vocal track and ai are the linear prediction coefficients.

Each second order resonator reflects a formant. So then, the transmit-
tance of the resonator is responsible for the formant values. The resonator
bandwidth is:

ρk =
(1 − pk)fe

Π
, (24.2)

where fe is the frequency of sampling, pk is the module or the A(z)’s roots.
If we change the resonator and his transmittance became:

H ′(z) = σ/A(z/γ), (24.3)
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Fig. 24.5. Formant extraction flowchart

where σ is a constant to be adjusted.
The modification will affect the bandwidth. More precisely, it will be ex-

tended according to the following expression:

ρ′k = (1−γpk)fe

Π = ρk + pk(1 − γ)/Π ; . (24.4)

This relation shows that the bandwidth passes from ρk to ρ′k and the
amount of expansion equals ρk(1− γ)/π and depends on γ.

24.4.2 Reduction of spluttering noise

Thanks to formant bandwidth expansion, intensive listening test show that
esophageal speech is well amplified and becames more intelligible. However,
the background noise, when it appears is also amplified which degrades slightly
the listening quality. So, a second idea of enhancement takes form. We have to
amplify the low frequencies where useful speech is present and leave constant
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Fig. 24.6. Bandwith of natural voice and esophageal voice .

high frequencies where the noise is predominant. We propose a correction for
the used perceptual filter. In fact, we can use an another filter defined with:

H ′(f) =
{
H(f) if f ≤ fchange
1 otherwise, (24.5)

Fig. 24.7. An example of frequency response of H(f) et H ′(f).

with fchange is the limit of the low frequencies. The figure 24.7 illustrate
an example of the frequency response of the first and the second filter. The
figure 24.8 shows the

24.5 Results and discussion

These treatment can be englobed in three different manner:
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Fig. 24.8. Signals before and after the filtering.

1. Schema I: We treat the signal in the same chronological way explained
in this paper: we enhance the source signal and then wee enhance the
formantic structure of the signal.

2. Schema II: in this way, the enhancement of the esophageal speech begins
with the amelioration of the formantic structure then the enhancement of
the glottal source signal.

3. Schema III: these enhancements are made at the same time.

Subjective evaluation test have been made by 15 persons (7 persons well
used to listening the esophageal speech and 8 persons who have never hear it
before) who listened to the sequences of our data base before enhancement.
The sequences used for the evaluation are french sentences:

1. aoa.
2. C’est un poison pour les poissons.
3. Charitbien ordonn commence par soi meme.
4. Ciel si ceci se sait, ces soins sont sans succes.
5. Prenez vos papiers de votreporte-feuille.
6. Tout le monde y songe.

The table 24.2 sums up the listening test result. For every sequence and
every method, we found the rate of appreciation. It’s quite clear that the
enhanced sentences are more appreciated than the original signal. We can
notice that the second method is the most appreciated with a rate of 66%.
The first or the third method could also be more liked depending on the
sentence. Some times, the three method gives sentences quite similar. That’s
why, in 8% of listeners can’t defferenciate the 3 enhancement.
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Table 24.2. Listening quality evalution of proposed enhancement techniques.

Sequences
original
signal MethodI MethodII MethodIII No difference

1 0 (0%) 3 (25%) 5 (42%) 3 (25%) 1 (8%)
2 0 (0%) 5 (42%) 4 (33%) 2 (17%) 1 (8%)
3 1 (8%) 3(25%) 3 (25%) 3 (25%) 2 (17%)
4 1 (8%) 2 (16.33%) 5 (42%) 2 (16.33%) 2 (16.33%)
5 1 (8%) 4 (33%) 5 (42%) 3 (25%) 1 (8%)
6 0 (0%) 3 (25%) 5 (42%) 3 (25%) 1(8%)

24.6 Conclusion

In this paper, a esophageal enhancemnet unsing source synthesis and formant
pattern is presented. First, we presented, the pitch extraction with the EV-
MACM. Then, we correct the pitch values to the natural pitch values. THese
modified pitch values are used for the source signal synthesis. In the second
part, the formant bandwith are enlarged. These enhancement are then en-
globed in three different ways.
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Summary. In this paper, an image cloning method called arbitrary cloning is pre-
sented, in which image matting and Poisson image editing techniques are applied.
The object boundary is extracted through image matting technique while Poisson
equation is solved to achieve natural result for seamless cloning. Compared with
existing techniques, the proposed approach gains a great deal of advantages: On the
one hand, great performance can be reached even in bad conditions. The method
will not be affected even when there are many holes in the foreground image and
there is complicated color variation in the foreground and background image. On
the other hand, the algorithm is very flexible in application that the α matte can be
guided by the user input. The examples show that the proposed approach guarantees
better output and diverse result.

Key words: image matting; Poisson equation; gradient field; arbitrary cloning

25.1 Introduction

Image seamless cloning is to separate the target object from source image
and then embed the selected object into the target image. Such a technique
is placed in a core position in image editing field. After Patrick Perez and
Michel Gangnet et al.[1] developed an approach of image cloning, there has
been continuing interest in the development of novel types of image cloning
algorithm based on both edge detection and color cloning technique.

Poisson editing method makes seamless editing of image regions by solving
Poisson equations with Dirichlet boundary conditions. The Poisson equation
can be discretized by Laplacian 5-point finite difference formula, and the op-
timal solution is computed by Gauss-Seidel iteration. Different initial value,
iterations and guidance gradient field can lead to different cloning result. Al-
though the Poisson editing algorithm is a compact algorithm and easy to
understand, it must detect the edge of target object manually, which is its
biggest disadvantage. When the shape of the target in the source image is
complicated, detecting the image edge manually is very difficult and a little
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error may lead to bad cloning result (Fig.25.1(e)(f)). Therefore, it is impor-
tant to extract the target image edge accurately in image cloning method.
In this paper, an image seamless cloning method which combines the im-
age matting and Possion editing techniques is proposed. Such an approach
can achieve more rapid cloning speed and better result compare to existing
cloning algorithms.

Fig. 25.1. An example of the algorithm

Formally, image matting method satisfies the following model:

Ii = αiFi + (1 − αi)Bi (25.1)

where αi is the pixel’s foreground opacity, Fi is the foreground image and
Bi is the background image.

To extract α, Fand B, for a RGB color image, User constraints are added
in to extract a good matte. Current methods need the user to input a trimap.
These methods typically use non-linear iteration to obtain α, F and B. This
will cost much time for a large unknown region in a trimap. If the image
is complex in structure, user must spend more time and energy to provide a
good trimap. L. Anat and L. Dani et al.[2] presented a closed-form solution for
extracting the alpha matte from a natural image. It optimized a cost function
from local smoothness assumptions on foreground and background colors, and
eliminate F and B yielding a cost function in α. The α matte can be obtained
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by solving a sparse linear system. A small amount of user input is needed
for extracting a high quality matte. Due to the flexibility of user input, the
foreground matte varies with different user input.

In this paper, a new image cloning algorithm is proposed which needs
only α as the gradient field mark of Poisson equation. This algorithm will not
compute F and B and therefore will decrease the computing cost. The new
image cloning solution combines two different types of algorithm which can
achieve a better cloning result.

Fig.25.1 shows a cloning result using the proposed technique on a sample
image and compares this result to Poisson Image Editing algorithm. (a) is a
source image and (b) is a target image. (c) is a alpha matte exacting from
source image. (d) is a cloning result which combines two images directly. (f)
is a Poisson Image Editing result and (e) is its partial enlargement. (h) is a
cloning result with proposed method and (g) is its partial enlargement with
natural boundary and seamless cloning.

This paper is organized as follows. Section 2 discusses the related work.
Section 3 introduces foreground matte extraction. Section 4 introduces Poisson
image editing algorithm. Section 5 presents the proposed cloning solution and
discusses several implementation issues. Section 6 evaluates the experimental
results and compares with other algorithms. Finally in section 7, concluding
remarks are offered.

25.2 Related Research

Image matting and image cloning are two different fields in image processing.
Image matting is to extract α, F and B from a given image. The tone blend
is not very important in image matting but very important in image cloning.
Image cloning does not consider the quality of exacting foreground object but
image matting does.

J. Jiaya and S. Jian et al. presented a solution for seamless image compo-
sition [3]. They used shortest closed-path algorithm to search for the location
of the boundary; then they used a blended guidance field for Poisson equa-
tions to extract the fractional boundary of the object. This approach achieves
seamless image cloning with only small amount of user input. When the source
and target images are similar in color, it may not work well. Furthermore, if
the target image has complex structures, the structure of the source region
and target scene cannot be precisely aligned. The user cannot control the
foreground matte directly. If there are many holes in the image, it may be
slow because the algorithm repeats the same work for several times. It also
takes extra time to compute α and α mask (M).

Recently, some new algorithms for extracting a foreground region from
background have been successfully proposed. They commonly solve α, F and
B with additional constraints, others with flashlight image and active-light
image. J. Wang and M. Cohen proposed an iterative optimization approach
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to solve the image matting problem [4]. This approach uses an iterative non-
linear optimization algorithm. J. Sun and J. Jia et al. proposed Poisson mat-
ting for image matting [5]. In their approach, the matte is directly recon-
structed from a continuous matte gradient field by solving Poisson equations
using boundary information from a user-supplied trimap. It involves local
Poisson matting which requires many user interactions. [6] is regarded as a
classical method. It transforms the matting problem to a Bayesian framework,
and extracts α matte. Other approaches [7][8] also achieve good result. These
approaches require constructing trimap as input, which is a difficult work
itself. Some algorithms have been presented to help user construct trimap
[9][10]. They obtain a ”hard” segmentation using iterative graph cut, and a
coarse trimap can be gained from the result. These algorithms are not stable
and may lead to wrong result if the image is complex enough.

As far as we know, there are three existing seamless cloning techniques.
The first one is used in Adobe Photoshop, which has not been published. The
second one is the multi resolution image blending proposed in [11]. It builds
Laplacian pyramid and interpolates to interfuse two images. The third one is
briefly discussed in Section 1 and will be detailed in Section 4, which is closely
related to the proposed approach.

25.3 Matte Extraction

25.3.1 Basic Theory

First, the matte is extracted through image matting technique. The problem
is under-constrained, so some basic assumptions are made on α, F and B[2].

For grayscale image, it assumes that in the neighborhood window of each
pixel, F and B are nearly constant. So (25.1) is rewritten as:

αi ≈ aIi + b, ∀i ∈ ω (25.2)

Where, a = 1
F−B ,b = − B

F−B , ω is a set of windows. The algorithm finds
α,a,b to minimize the following function[2]:

J(α,a,b) =
∑
j∈I

(
∑
i∈ωj

(ai − ajIi − bj)2 + εa2
j) (25.3)

Where, ω is a small window around j. It is a quadratic function with
respect to α,a,b. Since, it’s hard to solve the optimization problem directly,
according to [2], a,b can be eliminated, which results in a function with only
one parameter α: J(α) = mina,bJ(α, a,b) = αTLα, α is N × 1 vector, L is
a N ×N matrix, with N pixels. The (i, j)-th member of L matrix is:∑

k|(i,j)∈ωk

(δij − 1
|ωk| (1 +

1
ε

|ωk| + σ2
k

(Ii − μk)(Ij − μk))) (25.4)
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Where, δij is kronecker delta. μ, σ2 is the mean and the variance of the
pixels in the window ωk around k. |ωk| is the number of pixels in the window.

For color image, [2] relaxes the basic assumption, which gains advantage
that the new color model satisfies most of images, so it can be applied in more
conditions. And it finally derives the formula J(α) = αTLα, with L an N×N
matrix. The (i, j)-th member of L is:

∑
k|(i,j)∈ωk

(δij − 1
|ωk| (1 + (Ii − μk)(Σk +

ε

|ωk|I3)−1(Ij − μk))) (25.5)

where, Σk is a 3 × 3 covariance matrix, μk is a 3 × 1 mean vector in a
window ωk and I3 is a 3 × 3 identity matrix. The contribution of ε and |ωk|,
as well as the comparison between L and classical affinity function WG(i, j) =
e−||Ii−Ij ||2/σ2

, is analyzed completely in [2]. Because the eigenvectors of L are
used in image segmentation[12], the smallest eigenvectors of L can guide the
user where to place the input information.

Fig. 25.2. Extraction of α matte

25.3.2 Add User Constraints

First, the algorithm needs the user to mark the foreground and background
roughly. It’s scribbled in white and black distinguishingly, as shown in
Fig.25.2(a)(b). Secondly, the constraints are added into the optimization prob-
lem:

C(α) = αTLα + λ(αT − bTs )Ds(α− bs) (25.6)

where, the second term is the user constraints, λ is a large number that
decides the contribution of the user constraints in the whole function, Ds and
bs are detailed in [2]. All the partial derivatives of the function are set to 0 to
gain a linear system of equations (25.7). So α matte is extracted by solving
the equation, as shown in Fig.25.2(c).

(L + λDs)α = λbs (25.7)
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25.4 Cloning Theory

25.4.1 Basic Theory

We derive in the single color channel and extend to the RGB color space. The
goal is to interfuse the region Ω in source image Is into target image It, f
is an unknown function defined in Ω − ∂Ω. v is a known vector defined in
the field Ω in Is. [1] shows an approach to solving the following optimization
problem for interfusing two images:

minf

∫ ∫
Ω

|∇f − v|2 with f |∂Ω = It|∂Ω (25.8)

∇. = [ ∂.∂x ,
∂.
∂y ] is a gradient operator. According to the Ostrogradskii equa-

tions in calculus of variations theory[13], the solution is Poisson equation with
Dirichlet boundary conditions

Δf = div v over Ω, with f |∂Ω = It|∂Ω (25.9)

div v = ∂u
∂x + ∂v

∂y is the divergence of v = (u, v), Δ. = ∂2.
∂x2 + ∂2.

∂y2 is the
Laplacian operator.

25.4.2 Discrete Presentation

The discretization problem can be solved using image pixels. For each pixel
p, Np is a set of its 4-connected neighbors, < p, q > denotes a pixel pair, with
q ∈ Np. fp is f value on point p, and the target is to find f |Ω = {fp, p ∈ Ω}.

First, the gradient field needs to be defined, let v = ∇Is|Ω , with vpq =
Isp − Isq as the discretized presentation. So (25.9) is now:

Δf = ΔIs over Ω, with f |∂Ω = It|∂Ω (25.10)

According to Laplacian 5-point finite difference formula, (25.10) is dis-
cretized as:

|Np| −
∑

q∈Np∩Ω
fq =

∑
q∈Np∩∂Ω

Itq +
∑
q∈Np

vpq, for all p ∈ Ω (25.11)

When Ω contains the boundary pixels, the 4-connected neighbor becomes
3 or 2-connected, so |Np| < 4. But for the pixels inside Ω, (25.11) is rewrit-
ten with no boundary conditions |Np| −

∑
q∈Np

fq =
∑

q∈Np
vpq. Due to the

randomicity of the boundary conditions, it’s hard to create a linear system
of equations. So linear iterating such as Gauss-Seidel is used to optimize the
problem.
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25.5 Arbitrary Image Cloning

The work of this paper is to combine the two kinds of algorithms introduced
above. An interactive system is designed to apply the seamless cloning tech-
nique. The user first scribbles the foreground and background image roughly
using any of the painting software, and then extract the matte. After that the
user chooses where to place the source region into the target image so that
the interfusing operation is done.

The matte extraction needs to set up the matrix L, and solve a linear
system. The matte is equal to a grayscale image whose value is between 0 and
1, and it represents the transparency of the foreground image. We can use it
as a mark table, and only the corresponding pixels in the source image will
be interfused into the target image.

There are several methods to define the gradient field. [3],[1] gave two
different methods. The former takes the blend of source and target image
with α information as gradient field and the latter compares the absolute
value of the gradient between the corresponding pixels in source and target
images, takes the larger as the gradient of the pixel.

In this paper, the Ω region of the source image is chosen directly as the
gradient field for image seamless cloning (The results are satisfied as the ex-
periments shown in Section 6).

The region of Ω is defined as:

x ∈ Ω, if α(x) > AlphaThresh (25.12)

where AlphaThresh is a user defined parameter which is set to 0.3 in this
paper.

The gradient field of seamless cloning is:

v(x) = ∇Is(x), x ∈ Ω (25.13)

For image blending, the source image is not totally interfused into the
target image. And the effect is to superpose the colors of two images. The
classical method is to compute the weighted summation of RGB value of
two images, which leads to bad result and unnatural boundary. To solve this
problem, the following gradient field is taken:

v(x) =
{∇Is(x), if |∇Is(x)| > |∇It(x)|, x ∈ Ω
∇It(x), otherwise, x ∈ Ω

(25.14)

Fig.25.3 shows the difference between the two methods. (a)(b)(c)(d) are
distinguishingly the source image, the use input, the α matte and the target
image. (e)(f) show the results using the first kind of gradient field, while (g)(h)
using the second kind of gradient field. The difference between (f) and (h) can
be observed. (f) takes the source image as the gradient field, so the result is
not blended with the target image. (h) takes the blended gradient field so it
contains the color variation of both images.
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With the gradient field, Gauss-Seidel iteration is applied. The initial value
can be the source image or the target image. Based on different application,
this will gain different results. In addition, the user can control the number
of iterating, this also generates a variety of results. The next section will give
an analysis in detail.

Fig. 25.3. Image cloning and blend Fig. 25.4. The role of user guided
information

25.6 Experiments

[3] has got excellent results, in comparison, the arbitrary cloning algorithm
proposed in this paper gains advantage that the shape of the foreground matte
can be roughly controlled by users. Due to patent problem, we cannot get the
executable file of the paper [3]. So the comparisons are made with images from
paper [3] and the author’s web site directly. Comparisons are also made with
Poisson Image Editing and direct compositing. Experiment results indicate
that the proposed algorithm gain better result. Several experiments were car-
ried out on different purpose. And they can verify the flexibility and accuracy
of the algorithm.

Experiment 1 demonstrates that the foreground matte can be guided by
user to produce flexible cloning effects. And this behavior makes the primary
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advantage of the algorithm proposed in this paper. In Fig.25.4, (a)(b) are the
source and target image. (c)(f)(i) are user inputs, and (d)(g)(j) are the fore-
ground matte according to (c)(f)(i). It is obvious that the foreground matte
varies with different user input. In (d), the driver and the whole motorcy-
cle are extracted. In (g), the front wheel of the motorcycle is considered as
background. Only the driver, motorcycle’s body and the back wheel are ex-
tracted. In (j), only the person and motorcycle’s body are extracted. Different
foreground are interfused into the same target image, and the final results
are shown in (e)(h)(k). The user input can be changed according to different
user demands and applications. No matter how the user input changes, the
algorithm achieves excellent result. All the results in Fig.25.4 use the target
image as the initial value and iterate for 200 times.

Fig. 25.5. The result using different initial value and iterating number

Experiment 2 shows different cloning results using different initial value
and iterating number, as shown in Fig.25.5. (a)(b)(c)(d) are a source image,
a user input, a foreground matte and a target image. To avoid the influences
of inconsistent tone, the source image is transformed into grayscale image.
(e)(f)(g) use the source images as initial values, and the iterating number is
10, 200 and 2000 times. (h)(i)(j) use the target images as initial values, and
the iterating number is 10, 50 and 200 times. If the iterating number is large
enough, the final results are the same using either initial value. While using
the source image as initial value, the cloning tone is much similar to the source
image, and vice versa.
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Fig. 25.6. Comparison between different algorithms

Comparisons between different algorithms are shown in Experiment 3.
Fig.25.6 uses the images in [3] as source images and target images, and all
the comparisons between Poisson Edit, direct compositing and our paper are
based on these images. Column (a) shows the source images, foreground mat-
tes and target images. The results of direct compositing are shown in column
(b). Poisson Edit results are indicated in column (c), where the cloning results
are unnatural due to the uncertainty of the boundary conditions. Results of
algorithm [3] are shown in column (d) and the proposed method in column
(e). The results indicate that both (d) and (e) produce satisfying results, using
the images in [3] as testing images. Experiment 1 proves that our algorithm
is more flexible and powerful in bad conditions, such as complicated color or
boundary variation. The arbitrary image cloning algorithm can be used in
various situations, while other popular algorithms are restricted to a certain
kind of images.

Experiment 4 achieves image blending using the blended gradient discussed
above. Besides, some interesting results are obtained. And all these results
show that the algorithm can be used in various applications, and can also
provide better image seamless cloning solutions for users. The image cloning
algorithm can be used in the fields of art and innovation design, Fig.25.7 shows
an interesting result. The water lily can be blended with (a) or (b). However,
the Da Vinci self-portrait can only be blended with (b). That’s because for
most of the pixels in (a), the absolute value of the gradient is larger. When
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Fig. 25.7. Image blend

(a) and (f) is used, the blended gradient field is equal to (a), thus there is no
obvious effect. The gradient of (b) is much smoother, so most of the images
can be blended with (b).

The sparse linear system of equations (L + λDs)α = λbs is solved by
LU method, where is a symmetrical semi-definite matrix. It will take several
seconds when calculating the foreground matte of a 400 × 300 image on P4
2.8GMhz, 768MB memory computer. And during the Gauss-Seidel iteration,
the calculating time depends on the iterating number and the error threshold.
Generally, for a 200× 200 iterating region, it takes about 4 seconds to iterate
for each 100 times.

25.7 Conclusion

The paper presents an arbitrary cloning method. Image matting and Poisson
image editing techniques are applied to accomplish the image seamless cloning
and to achieve a complete solution for image interfusing. The object bound-
ary is extracted through image matting technique while Poisson equation is
solved to achieve natural result for seamless cloning. A number of experiments
indicate that the paper gains advantages in performance under bad conditions.

The main work of this paper is that two different kinds of algorithms are
combined to solve this challenging problem, and a framework of combination
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is proposed. But it’s not satisfying when dealing with large dataset. The cost-
ing time of foreground extracting increases saliently with the size of image.
The reason is that the L matrix is so large. So if the user chooses a image
of 800 × 600 or bigger on common memory condition, the matting problem
transforms into solving the sparse linear system of equations, which was a well
studied subject. Our future research directions are to improve the speed of
the algorithm and apply a similar technique on video seamless cloning.
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Summary. This chapter deals with iterative joint source channel decoding and its
application to image transmission. First, the problem of transmitting a correlated
gaussian source over an AWGN channel is considered. The joint decoding is imple-
mented by the Baum Welch algorithm estimating the source statistics. Iterations
between the MAP channel decoder and the source decoder are made to improve
the global decoder performance. This decoding scheme is then applied to an image
transmission system, based on a wavelet decomposition of the source image followed
by a DPCM coding of the lowest frequency subband and a SPIHT coding of high
frequency subbands. Simulation results show that a significant performance gain is
obtained with iterative joint source channel decoding, compared to a classical decod-
ing, in case of a correlated gaussian source and also in case of image transmission.

Key words: Joint Source-Channel Decoding, Iterative Decoding, Baum-
Welch Algorithm, DWT, DPCM, SPIHT.

26.1 Introduction

In traditional communications systems, source and channel coding are per-
formed separately. However, the separation between source and channel cod-
ing has turned out to be not justified in practical systems due to limited
coding/decoding delay and system complexity. On these circumstances, one
can improve performance by considering the source and channel design jointly.
Research on this area goes back to the work of Fine [1] and continuous to the
present [2]. On the other hand, Turbo-codes [3], with their iterative decoding
techniques, achieve very good performance, which are close to the theoretical
limit of Shannon. In this paper, we consider the problem of transmitting a cor-
related source over an AWGN (Additive White Gaussian Noise) channel. This
source is protected by a convolutional code. We use the turbo codes principle
to release an iterative joint source channel decoding algorithm with estimation
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of source statistics. This scheme is applied to an image transmission system.
In chap26section1, we briefly remind the Baum-Welch algorithm principle, ap-
plied to joint source-channel decoding. The turbo decoding principle is used
in the chap26section2, to release an Iterative Joint Source Channel Decoding
(IJSCD) algorithm. Performances of iterative decoding for a correlated gaus-
sian source transmission are presented in chap26section3. In chap26section4,
the IJSCD is applied to an image transmission system, based on a wavelet de-
composition of the source image followed by a DPCM (Differential Pulse Code
Modulation) coding of the lowest frequency subband and a SPIHT (Set Par-
titioning in Hierarchical Trees) coding for high frequency subbands. Finally,
simulation results for the lowest frequency subband and the entire image,
are respectively given. Chap26section5 draws conclusions and suggests future
work.

26.2 Joint source-channel decoding and estimation of
correlated source parameters

We consider the problem of encoding and transmitting a source signal vec-
tor I ={i0, i1, , it, , iT−1} over a noisy channel. We still want to know the
sequence of transmitted source indexes it but they are not directly observable
because of the possible corruption by the channel. Instead, we have the re-
ceived indexes,O = {o0, o1, ., ot, .oT−1}, which are the observations related to
the input probabilistically. This situation can be directly interpreted as a dis-
crete Hidden Markov Model (HMM). A discrete HMM can be defined by two
parameters and three probability matrices. The parameters are K the number
of states, and T the source sequence length[4]. To determine, at each time,
the most likelihood symbol, we use the BCJR (Bahl Cocke Jelinek and Raviv)
algorithm originally proposed in [5] and based on the forward-backward al-
gorithms. The BCJR allows to calculate the a posteriori probability denoted
γt(i):

γt(i) = P[It = i|O, λ] (26.1)

To calculate γt(i), we need to determine two variables: αt(i) and βt(i).
The BCJR algorithm combines the forward induction with the backward one
to compute the probabilities γt(i). For more details refer to [5]. The meth-
ods above allow to determine the most likelihood a posteriori symbol, where
γt(i) is maximum, with consideration of a hidden Markov source whose pa-
rameters are known. A more powerful approach would allow the receiver to
use the noise-corrupted observations available in the decoder to estimate the
parameters characterizing the hidden Markov source. We will estimate source
statistics by the Baum-Welch algorithm called also EM [6][7].

Estimation of source parameters at the receiver

We try to estimate the source transition matrix A. Its elements ai,j are the
source transition probabilities:
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ai,j = P(It = j|It−1 = i); 0 ≤ i, j ≤ K − 1 (26.2)

To do that, we introduce a new parameter ψt(i, j) representing the probability
that source state is i at the time t and j at time t+1:

ψt(i, j) = P[It = i, It+1 = j|O, λ] =
αt(i)ai,jP (Ot+1 = ot+1|It+1 = j)βt+1(j)∑K−1

i=0 αt(i)βt(i)
(26.3)

The re-estimation formula is then given by:

ai,j =
∑T−2
t=0 ψt(i, j)∑T−2
t=0 γt(i)

(26.4)

After having re-estimated the parameterA of the initial hidden Markov model,
the algorithm will repeat iteratively the re-estimation with the new model
(we calculate another time the α and β values).This process can be repeated
iteratively until no further improvement in the model results. The transition
source matrix A is initialised as follows: a0

i,j = P [It = j]. After calculating the
a posteriori probabilities, we determine at each time t, the value ît maximising
γt(i). ît is the most likelihood symbol value at the time t which will be decoded.

26.3 Iterative joint source-channel decoding

26.3.1 System model

We consider the system model shown in chap26figure1. The correlated source
produces a sequence of T continuous-valued, gaussian distributed symbols,
with a variance equal to 1 and a correlation factor equal to 0.9. Each symbol
of the sequence is quantized by a scalar quantizer, that produces a sequence
of indicesI = (i0, ..., it, ....iT−1) According to a fixed length bit mapping,
each index it is assigned a unique binary sequence Bt = (bt,1, ..., bt,L)which
generates a bit sequence B = (B0, ...., Bt, .....BT−1) of length K = T ∗L bits,
where L is the binary code word length. This bit sequence is bitwise interleaved
with an interleave denoted Π , before being coded by a recursive systematic
convolutional encoder and transmitted over an AWGN channel using BPSK
modulation. The received sequence is denoted Y = (y0, ..., yt, ...., yT−1) ; yt =
(yt,1, ...., yt,l, ....., yt,L) It constitutes the iterative decoder input.

Both source and channel decoders are Soft In/Soft Out (SISO). The MAP
algorithm is used as a channel decoder, while the Baum-Welch (EM) algorithm
is used as a source decoder estimating source statistics. The Iterative Joint
Source Channel Decoding (IJSCD) method will now be described.

26.3.2 Iterative Joint Source Channel Decoding (IJSCD) method

The iterative decoding scheme is related to turbo decoding. It consists of a
data exchange between two or more channel decoders which are SISO de-
coders. The source and channel decoders receive and send their messages in
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Mapper, Π : Interleaver)

terms of Log-Likelihood Ratio (LLR). Let’s remind that we have an infor-
mation exchange between the source decoder, operating with symbol data,
and the channel decoder working with bit data. So we need conversion blocks
P(S)→P(B) and P(B)→P(S), which allow to calculate bit probabilities from
symbol ones and back again. The channel decoder allows us to determine an
a priori information Las for the source decoder. However, this information is
a bit information and the Baum-Welch algorithm needs a symbol one. The
conversion bloc P(B)→P(S) is used to calculate symbol probabilities from
bit ones. Formally, if we write the probabilities for each bit input to the
P(B)→P(S) block as , where c ∈ {0, 1}, then symbol probabilities are approx-
imated by the product of the corresponding bit probabilities:

P(It = i) =
L∏
l=1

PA(bt,l = mapl(it)) (26.5)

where mapl(it) is the bit of position l in the bit word mapping the symbol
i. The probability PA is determined from the a priori information Las:

Las(bt,l) = ln(
PA(bt,l = 1)
PA(bt,l = 0)

) (26.6)

At the output of the source decoder, we need to know the bit probabilities
to calculate the extrinsic information rescued at the channel decoder. The
Baum-Welch algorithm used for the source decoding provides the a posteriori
symbol probabilities. Therefore, we need to apply the P(S)→P(B) conversion.
The bit probabilities are derived from the symbol ones as follows:
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P(bt,l = c) =
∑

i/mapl(i)=c

P(It = i) (26.7)

Then,the source decoder output is given by:

Ls(bt,l) = ln(
P(bt,l = 1)
P(bt,l = 0)

) (26.8)

We subtract the a priori information values Las from this information to get
the extrinsic values Les, rescued, after interleaving, to the channel decoder as
an a priori information Lac. This decoding procedure is repeated iteratively.
We pull up when performances stop to improve.

26.4 Simulation results (Case of a correlated Gaussian
source)

To evaluate the proposed system (chap26figure1) performances, we plotted
the Bit Error Ratio (BER) evolution, as a function of the signal to noise ratio
Eb/N0. The results achieved are compared to a transmission chain using a
classical decoding scheme (without iterative joint source channel decoding),
considered as a reference chain. This chain uses in fact, the Viterbi algorithm
as a channel decoder. We have considered the transmission of a sequence of
400 symbols, issued from a one-order Markov Gaussian source, with a variance
equal to 1 and a correlation factor equal to 0.9. Each symbol value is quantized
by a one step uniform scalar quantizer. The quantized indexes belong to a
source alphabet of size 7. The fixed length bit mapper (FLC) associates to
each quantized index a 3-bit binary code word. We have used a recursive
systematic convolutional code [8] with generator polynomials (37, 21) and rate
1
2 . The used interleaver is a random one of size 20 ∗ 60. Simulation results are
represented on chap26figure2:

• IJSCD: iter4 refers to a transmission chain with iterative joint source-
channel decoding, with source perfect knowledge, at the forth iteration.

• IJSCD+EM: iteri refers to a transmission chain with iterative joint source-
channel decoding, with source statistics estimation, at the iteration i.

We notice that for a BER of 3.10−4, a gain of 1.5dB in (Eb

N0
), is achieved by

the iterative decoding system with source statistics estimation (DICSC+EM)
comparing to the reference chain. The gain is more than 2dB, for the iterative
decoding with perfect knowledge of source statistics. For a signal to noise ratio
of 4dB, the BER is near 10−5 for the transmission system with iterative joint
source-channel decoding (perfect knowledge statistics), and only about 3.10−4

for the reference chain. So we can conclude that the proposed transmission
system, bring a strong gain in performances comparing to a classical system
based on a separated source and channel decoding.
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26.5 Application to image transmission

The majority of efficient image compression algorithms use a transformation,
applied to the original signal, a quantization and an entropy coding. Accord-
ing to the choice of the transformation, the quantization and the entropy
coding, many compression schemes have been proposed. One of the most
used transformations for image coding is the Discrete Wavelet Transformation
(DWT)[9].

26.5.1 DWT and SPIHT principle

The discrete wavelet transformation is derived from the multiresolution anal-
ysis, developed by Stephane Mallat and Yves Meyer[10]. The aim of this the-
ory is to decompose a signal into different resolutions. The lowest frequency
subband contains the most important information of the image. The high fre-
quency subbands constitute the image details. We use in our work, one of
the most powerful wavelet-based image compression method: the SPIHT (Set
Partitioning in Hierarchical Trees)[11]. It is an image compression algorithm
exploiting the inherent similarities across subbands in a wavelet decomposition
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of an image. The SPIHT compression principle is based on the use of the zero-
trees, in the wavelet subbands in order to reduce redundancies between them.
Spatial orientation trees are created; they contain all the wavelet coefficients
at the same spatial locations in the finer resolution subbands. Chap26figure3
shows an example of spatial orientation trees in a typical three level subband
decomposition. The wavelet coefficients are encoded according to their na-
ture: root of a possible zero-tree or insignificant set, insignificant pixel and
significant pixel. The significance map is efficiently encoded by exploiting the
inter-subband correlations and the bitplane approach is retained to encode the
refinement bits. The SPIHT algorithm is mainly based on the management
of three lists (List of Insignificant Sets, List of Insignificant Pixels and List
of Significant Pixels). An iterative process successively scans and encodes the
coefficients of each spatiotemporal tree[11].

26.5.2 Proposed image transmission system

The block diagram of the proposed image transmission system is given in
chap26figure4. In this system, we use an image compression algorithm based
on the DWT. he Lowest Frequency Subband LFS is coded separately from
the Highest Frequency Subbands HFS. This allows unequal error protection
to be easily applied. Also, if only a few levels decomposition are used, the
decoded LFS would give a reasonable approximation of the entire image. The
wavelet coefficients in the LFS are scalar quantized and then DPCM encoded.
The latter is done by first finding a predicted value, for each coefficient, the
prediction of a sample is merely the value of the previous sample. The pre-
dicted value is then subtracted from the coefficient to give residual coefficient,
which is typically encoded. The HFS are encoded by the SPIHT algorithm.
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The SPIHT coder provides good compression performance, but it is quite
sensitive to bit errors. A convolutional code is then used for channel coding.
The DPCM encoder leads to correlation among the transmitted indexes that
can be considered as a first order Markov process. The idea is to apply the
iterative joint source-channel decoding method, described in chap26section3,
to data issued from the DPCM encoding of the LFS, in order to improve the
image decoding. In the system that we propose, the wavelet coefficients of the
LFS are scalar quantized and then DPCM encoded. Each obtained symbol
is mapped into a binary code word. The resulting binary data are encoded
using a recursive systematic convolutional code, and then transmitted over
an AWGN channel. The iterative joint source-channel decoding method is ap-
plied at the receiver to decode the LFS data. The wavelet coefficients of the
HFS subbands are coded by the SPIHT algorithm followed by a convolutional
code. They are transmitted over the AWGN channel, then, they are decoded
using the Viterbi algorithm followed by the SPIHT decoder. All subbands are
regrouped. We finally apply a wavelet inverse transformation to restore the
whole image.

26.5.3 Experimental results

In all our simulations, the Lena image of size 512 ∗ 512 pixels (8 bpp), is used
as a test image. A three level wavelet decomposition is applied to the image,
using the 9-7 filters. So the number of wavelet coefficients in the LFS is equal
to 4096. These coefficients are quantized by a uniform scalar quantizer and
then DPCM encoded. Each obtained symbol is represented by a 7-bit binary
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code word. So we have a binary frame of 28672 bits representing the LFS data.
This frame is shared into 32 packets (each packet has a length of 896 bits).
These packets are then encoded by a recursive systematic convolutional code
with generator polynomials (37, 21) and rate 1

2 . They are transmitted over an
AWGN channel. The IJSCD method, described in chap26section2 is applied at
the receiver to decode the LFS data. The number of iterations is fixed to 3. The
wavelet coefficients of the HFS subbands are coded by the SPIHT algorithm
followed by a convolutional code with generator polynomials (37, 21) and rate
1
2 . The rate at the output of the source coder is fixed to 1 bpp. The results are
averaged over 500 channel realizations. In order to visualize the contribution
of iterative joint decoding, we compared performance in terms of PSNR of
the lowest frequency subband (PSNR-LFS), for the two systems without and
with IJSCD decoding and source statistics estimation. Let’s recall that our
system applies IJSCD only to the LFS data, and that our reference system
uses a separate source and channel decoding for both LFS and HFS data. The
chap26figure5 represents the variation of the PSNR of the lowest frequency
subband (PSNR-LFS) according to the signal to noise ratio Eb

N0
.

We can see that a significant gain in the PSNR of the LFS is obtained by
using IJSCD. Indeed for a signal to noise ratio Eb

N0
= 4dB, we have a gain of

about 8dB. The figure 6 represents the variation of the PSNR of the entire
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image according to the signal to noise ratio Eb

N0
, for the image transmission

systems without and with IJSCD and source statistics estimation. We can
note that a significant gain in PSNR is achieved by iterative joint source
channel decoding, comparing to classical decoding. This gain is about 1 dB
for Eb

N0
= 5dB.

26.6 Conclusion

An efficient joint source channel decoding method, implemented by an itera-
tive algorithm, and applied to an image transmission system is stated in this
paper. The principle of this iterative algorithm is inspired from the turbo codes
one; it uses the Baum Welch algorithm to estimate the source parameters
at the receiver. A convolutional code is used for channel coding. Simulation
show that, in case of a correlated gaussian source transmission, iterative joint
source-channel decoding leads to a significant performance gain, in compari-
son with classical decoding. This iterative decoding scheme is applied to an
image transmission system based on a wavelet transformation and a DPCM
coding of the LFS and a SPIHT coding of the HFS. Channel coding is per-
formed with a convolutional code. The simulation results indicate that the use
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of iterative joint decoding for the LFS data, can improve the error resilience
of the image transmission system. The primary area of future research is im-
proving the source compression, by using a variable length code instead of the
fixed length one. We can also use turbo codes to improve the error protection.
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27.1 Introduction

Solid-state cameras have revolutionised the field of astronomy and are the
enabling technology in the Hubble Space Telescope. Specially designed high-
speed cameras have allowed scientists to visually observe time scales which
were once an untouched domain. In the consumer market, they have made
celluloid film-based cameras redundant and simultaneously created entirely
new markets of their own. Indeed, solid-state imagers have become ubiquitous
in all fields, driving the demand for low-power, high-performance imagers.

Despite its advances, a huge gap resides between what can be achieved in
technology and what is achieved in biological sensors. The retina can adapt to
almost any lighting condition and will consumes relatively little power. Engi-
neers have turned their attention to biologically inspired camera architectures
that promise to deliver high performance at an ultra-low power usage. This
chapter will discuss one such avenue into ”biomorphic” image sensors known
as Address Event Representation (AER), starting with a brief background on
image sensors in general.

27.2 Imager Basics

In digital cameras, images are acquired by a sequential readout from a pho-
tosensitive cell array [1]. The inferred brightness of each pixel will depend on
the amount of light that falls on the photosensitive cell (otherwise known as
a pixel) as well as on the duration of the integration period, the electronic
analogue of the camera shutter speed.

A simplified physical circuit pixel circuit is shown in fig. 27.1, which in-
cludes a ”reset” transistor that controls the integration period, and a junction
capacitance which retains charge. As light with power Pph strikes the photo-
diode, a current discharges the capacitor and reduces the voltage VD shown in
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Fig. 27.1. The charge and discharge of a photodiode, operating as a pixel.

the diagram. Conventionally a circuit would wait until a time Td and measure
the final voltage on the capacitor. A lower VD implies a brighter illumination
incident on the pixel, since a larger current discharges the capacitor.

Conventionally, all pixels begin to integrate at the same time, and once
halted an Analog to Digital Converter (ADC) must be used on each pixel
sequentially. In the case of high resolution imaging systems, this conventional
read out results in significantly reduced frame rate and leads to high power
consumption since row and column pixel selection circuitry will need to be
active for a longer period of time. Furthermore, faster or more numerous
ADCs will need to be employed compounding the engineering problem and
the power consumption issue.

Instead of integrating for a fixed time Td, one can also wait for the voltage
to reach Vth and measure the time taken. This has several advantages, most
notably since it is simple to time an event using a digital circuit. If one was
to construct a large array of such a pixel, given a random illumination profile,
pixels will reach their threshold voltages at different times. Thus the problem
of waiting for all pixels to complete their integration phase is circumvented.
Furthermore, ADCs which consume a large amount of power in an imager are
eliminated in favour of a timing circuit. The acquisition method described is
referred to as Address-Event-Representation (AER) and is formally defined
as a set of addresses (locations of pixels) each with a set of times repre-
senting events. This biologically inspired data representation is modeled after
the transmission of neural information in biological systems [2][3]. An AER
Stream, is a pulse data form signalling events as they occur. Using the infor-
mation contained in an AER stream a simple signal processor can reconstruct
the original image which created it.

Each time an event occurs (for instance when a predefined voltage is
reached), a spike is generated by a pixel and a request for bus access is made
to a peripheral arbiter. The latter takes the pixel address and places it on the
bus. As a result, the asynchronous bus will carry a flow of pixel addresses.
At the receiver end of the bus, address and time information are combined
to retrieve the original data (e.g. pixel brightness value). In an AER-based
imaging system, pixel read-out is initiated by the pixel itself. As a result, bus
access is granted more frequently to active pixels (i.e., pixels that have gen-
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erated events) than less active pixels, which will in turn consume much less
communication bandwidth. The AER communication protocol makes efficient
use of the available output bandwidth since read out can be achieved at any
time upon request. In terms of power consumption, AER is also more efficient
than the conventional fixed time-slot (synchronous) allocation of resources;
this because not all pixels are likely to require computation/communication
resources at the same time, hence there is no waste of resources. In the next
section, we describe the basic building blocks of an AER based-imaging sys-
tem.

27.3 AER-Based Imaging

27.3.1 Event Generator

In an AER-based imaging system a pixel comprises an event generator used
to request access to the output bus each time a pixel has reached a predefined
threshold voltage. The output of the event-generator pixel can be either a
single pulse or a sequence of pulses [4]. In the latter case, the event-generator is
referred to as Pulse Frequency Modulated (PFM) with the inter-spike interval
a linear function of the pixel brightness value. In the case of a single output
pulse, the event-generator is referred to as Pulse Width Modulated (PWM)
because the duration of the pulse width is inversely proportional to the pixel
brightness value. The PWM event-generator offers lower power consumption
(a single transition) at the cost of a non-linear response [5]. Both PWM and
PFM schemes encode illumination information in the time domain, providing
noise immunity by quantisation and redundancy. In addition, representing
intensity in the temporal domain, allows each pixel to have a large dynamic
range (up to 200dB by modulating the reset voltage), since the integration
time is not dictated by a global scanning clock. Moreover, time encoding
ensures a relative insensitivity to the ongoing aggressive reduction in supply
voltage that is expected to continue for the next generation of deep submicron
silicon processes.

27.3.2 Arbitration

While offering many advantages, an AER based imager presents new problem
to the designer as threshold events will be created in parallel. A feasible circuit
would only be able to handle one such event at a time. There is always a
likelyhood that two or more event in different locations will occur concurrently.
This problem is referred to as a collision and an asynchronous circuit known as
an ”arbiter” is required to address this issue. The basic idea is to setup a queue
where each pixel independently announces that it is ready to send its address
(when the threshold is reached) and then awaits an acknowledgement from
a control unit. When the acknowledgement is received, the pixel removes its
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request and resets itself in order to be ready for the next frame. The arbiter’s
job is to acknowledge only one of many requests, making it a critical element
of the circuit. For example, In the situation where two requests come at the
same time, only one of them will be chosen and acknowledged.

Fig. 27.2. The handshaking protocol of a single pixel with a horizontal time axis.
The timing error is composed of an arbitration error and a handshaking error.

Since the pixels will be arranged in a grid, a topology must be utilised
where pixels share rows and column ”request” buses. In order for a pixel to
be acknowledged, both its row and column requests must be acknowledged
as illustrated by the simplified bus signals shown in fig. 27.2. Note that there
are two types of timing errors. There is a signalling delay (handshaking error)
labelled thandshake and a waiting error tarb called the arbitration delay.

From the basic two-request line input arbiter shown in fig. 27.3.a), we can
build up an arbiter for a bigger system by connecting the acknowledgement
lines into another arbiter’s request line. The generation of these signals is split
up into arbitration, propagation and acknowledgement units. The arbitration
unit selects one of two request lines and stores its decision in an internal state.
The propagation unit will then send a signal to the next stage of arbitration,
which when finished will send an acknowledge signal back to the arbiter as
shown in 27.3.b. The arbiter will then send an acknowledge signal to the pixel
chosen by its internal state.

This way the outputs of two arbiters become the input of one arbiter,
forming a four-request line arbitration block. Since each arbitration block will
have its own delay time, it is trivial to show that this delay will be logarithmic3

with respect to the number of request lines. This delay is the arbitration delay
tarb mentioned previously and it is critical that it should be minimised in order
to increase the image quality in the camera.

3 This is of course if we assume all delays are equal, normally two temporally close
requests will generate a larger delay.
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Fig. 27.3. a) A 2-input building block of a hierarchical arbitration tree. b) A 4-input
arbitration tree.

27.4 Event driven Simulation

An AER simulator was developed to evaluate the performance of possible
AER image coding implementation schemes. The simulator was developed in
C++. It has very efficient runtime performance when compared to similar
simulators utilising Verilog, requiring less than a seconds4 to simulate the
behaviour of a 128x128 pixel array. The block diagram of the simulator is
shown in fig. 27.4. An image is initially loaded by the ”loading stage” and
converted from intensity information into timing by a reciprocal relationship.
Since digital representation of intensity have no units, a constant of propor-
tionality τ is used. The second stage involves simulating the behaviour of
a physical AER imager, with arbitration and row/column delays. Finally a
computational stage calculates the overall reduction in quality created by the
arbitration process.

Fig. 27.4. Block diagram of simulator.

The AER simulator system uses an event-wheel based on the heap data
structure. This event-wheel stores the upcoming events such as a pin go-
ing high, an arbiter receiving an edge or a photodiode discharging down to
its threshold voltage. The heap data structure insures that the events are
4 As tested on a x86 based 1.73GHz processor.
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processed sequentially in time. However, the event-wheel has additional func-
tionality which processes some events with higher priority. In this design,
processed events will generate events in the future. These are pushed on to
the event-wheel, which will continue to process events until it is empty, in
which case the simulation ends. The initial state of the camera is assumed to
be a reset state, where no pixels are discharging and all buffers are cleared.
An image is then loaded, whose digital values are translated into discharge to
threshold times (also known as Time to First Spike or TFS). A global integra-
tion signal is then simulated, where all pixels create an event in the future at
the time when they are expected to reach their threshold voltage. The state of
the pixels are thus in the ”integrating state” and will eventually be processed
one by one into their next state.

Since the simulator is event-based, even though these processes are sim-
ulated sequentially, it is effectively concurrent. The current time is never in-
cremented manually; instead it is refreshed with the latest event’s value. By
operating in this fashion, delays will propagate themselves and thus simplify
the operation of the simulator greatly. The buffers hold the locations of the
pixels which have fired and are awaiting arbitration. This is to simulate the
memory realised by the physical buffers. This buffer structure is routed into
the neighboring arbiters using a look up table, based on row or column loca-
tion. This speeds up simulation immensely, however it needs to be initialised
once before simulation can commence.

The arbiters accurately simulate the logical behaviour of the real cell.
There are two events which effect row and column arbiters, ”arb edge” and
”arb update”. The former is an event which is called whenever an arbiter’s
neighboring cell changes its output. Since it takes some time window in order
to decide on the arbitrated signal (if any), some propagation time is taken be-
fore the new even ”arb update” is generated. This will then also have a propa-
gation delay of its own, depending on whether the priority or non-priority line
has been selected. This models the real life behaviour, since the pull strength
of the non-priority line is weaker, it will take longer to create a transition. Fi-
nally, arbiters toggle priority by simply swapping a logic bit upon selection of
a line. When the simulation ends, each pixel will store a value which contains
the total time until it receives a column acknowledgement. This is taken to
be equivalent to the time which it would be placed on the AER stream. Thus
by creating a new heap and pushing on these locations and times, an AER
stream is formed by this simulator. Finally, to reconstruct the image either a
time to intensity mapping or a simulated timing circuit can be used. Using
this, a comparison can be made between the original image, and the errors
generated by arbitration and AER architecture.
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Fig. 27.5. Fixed arbitration (1.A-C and 2.A-C) and Fair arbitration (3.A-C and 4.A-
C): Delay and number of requests as a function of the intensity-to-time conversion
factor . The original image Lena is 256×256.

27.5 Results

27.5.1 Latency

The AER simulator emulates the finite time required for arbitration of an
image. It thus introduces additional timing errors as illustrated in fig 27.5.
In AER, brighter pixels are favoured because their integration threshold is
reached faster than darker pixels. As a result, brighter pixels will request the
output bus more often than darker ones. This results in an unfair allocation of
the bandwidth. Two different arbitration schemes were examined, with images
1 and 2 utilising a fixed arbiter, and images 3 and 4 utilising a fair arbiter. In
the fixed arbiter, priority is given always to the same input lines. In contrast,
a fair arbiter toggles the priority between input lines. It should be noted that
fair arbitration gives a subtle enhancement of the output image. In addition
to different arbitration schemes, different values of τ were used in order to
evaluate the degradation of image quality, representing the conversion factor
used by the AER simulator to map intensity into the time domain (First block
in 27.4).

This effect is quite pronounced, with the upper half of the image gaining
priority over the lower half. An AER imager typically processes its columns
after a row has been chosen to have a greater priority over the others which
are waiting. Thus the time it takes to process any row is compounded over
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all waiting rows. In order to evaluate this timing delay, a histogram (images
1B to 4B) was constructed consisting of the number of pixels per row which
make a request once their row has been acknowledged. The results (which
were cropped to eliminate negligible bins) show that fair arbitration tends to
reduce the amount of requests on average, but only a small amount for this
image. Finally, the delay of each row was recorded, and plotted in a histogram
representation, for each respective image. As intuitively expected, there is a
direct correlation between the number of pixel requests and the delay, on
average.

27.5.2 Event Generator

In fig. 27.6, we see the difference between PWM and PFM encoding, with
different values of τ . Both of these simulations are run using fair arbitration.
Figures 1-3A show the PWM encoding scheme at values of the intensity-to-
time factor τ of 1.1, 0.7 and 0.3 respectively. We see that for a value of 1.1,
arbitration causes only a few minor losses in contrast. Lowering τ to 0.7,
the error begins to dominate in one half of the image and at 0.3 the loss in
contrast is apparent everywhere in the image. We can see the error due to
PFM encoding in figures 1-3B, for the same values as before, however with a
capture time of 0.1. This value represents the amount of time the simulation
is run upon which all events are blocked and the occurrences are counted
immediately.

Fig. 27.6. PFM and PWM encoding as a function of the intensity-to-time con-
version factor τ . The left image represents the highest value of τ with proceeding
images representing a lower value.
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For a value τ of 1.1, the image quality is greater than that of the PWM
encoding scheme when judged by a human observer. However, the image has
lost a great deal of contrast. At a value of 0.7, the image loses more contrast,
however the quality can be judged to remain high than that of the TFS image.
Finally at a value of 0.3, the imager begins to suffer from arbiter starvation,
where a single row arbiter is receiving requests faster than it is dropping them,
leaving one half of the image without acknowledgement.

27.6 Conclusion

In this chapter, we have explored the potential benefits of AER image coding
schemes for high speed low power image capture and transmission. An in-
house AER simulator was developed to examine potential arbitration schemes
such as fixed and fair arbitration protocols and evaluate their performance
evaluated in terms of event generator element, latency and output bit stream
compression.
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Summary. This paper deals with image processing. This study takes place in a
segmentation process based on texture analysis. We use the multifractal approach
to characterize the textures. More precisely we study a particular multifractal spec-
trum called the large deviation spectrum. We consider two statistical methods to
numerically compute this spectrum. The resulting spectrum, computed by both
methods over an image, is a one dimension spectrum. In the scope of this article,
we extend these methods in order to obtain a two dimensions spectrum which could
be assimilated to an image. This 2D spectrum allows a local characterization of the
image singularities while a 1D spectrum is a global characterization. Moreover, the
computation of the spectrum requires the use of a measure. We introduce here a pre
processing based on the gradient to improve the measure. We show results on both
synthetic and real world images. Finally, we remark that the resulting 2D spectrum
is close to the resulting image of an edge detection process while edge detection us-
ing one dimension spectrum requires post processing methods. This statement will
be used for future works.

Key words: multifractal analysis, multifractal spectrum, numerical computing
spectrum, Hlder exponent, Choquet capacity

28.1 Introduction

Texture analysis techniques have been intensively studied over the last decades,
among and the image processing community. Within these techniques, mul-
tifractal analysis was introduced by Parisi and Frisch [3] to study the singu-
larities of 1d-signals and has yielded some interesting results. Nevertheless,
as many tools of multifractal analysis have been developed initially for 1d-
signals, there is no direct way to use them on images without loosing the
intrinsic 2d-relation between two neighbour pixels. For example, [16] used the
large deviation spectrum to detect edges in images. However, in this study,
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the computation of the large deviation spectrum considers the image as a
1d-signal.

This article deals with the generalisation of large deviation spectrums to
the case of 2d-signals. In order to do so, we will reconsider many approaches
from the 1d-case. All of these approaches deal with a so-called multifractal
spectrum which is roughly a tool used to quantify the number of points having
the same Hölder exponent (singularity). As the estimation of this number of
points is particularly difficult when dealing with discrete data, many numerical
approaches can be found in the literature.

The original study [3] was based on the study of the power law behaviour
in structure functions [6], [7]. As the computation used the Legendre trans-
form, the estimated multifractal spectrum was called “Legendre Spectrum”.
However, as shown by Muzy and al. [8], Arneodo and al. [9], the structure func-
tion method has many drawbacks. Particularly, it does not allow to access to
the whole spectrum. They both present a new method to apply a multifrac-
tal analysis based on a wavelet transform modulus maxima [10],[11],[12] still
conducting to a Legendre spectrum estimation.

Other authors suggest applying the multifractal analysis on a measure
defined over the signal itself. Turiel and al [13],[14] compute fractal sets and
are particularly interested on the MSM (Most Singular Manifold) set. MSM
allows to characterize a signal from a geometrical and statistical point of view
applying the gradient operator over the initial signal and then using a wavelet
transform in order to determine the fractal sets.

Lévy-Véhel and al. [15] use the Choquet capacity firstly to define mea-
sures, secondly to determine the Hölder exponents and then to compute the
multifractal spectrum. In this way, they introduce the kernel method and the
histogram method to estimate, in a one dimension context, a multifractal
spectrum called the “large deviation spectrum” [1]. This spectrum allows to
characterize the singularities in a statistical way.

This last approach, as previously said, was applied successfully in [16] to
an application of edge detection and is the one we would like to generalise.

The article is built as follow. After having presented some mathematical
pre-requisite and the way to compute the singularity exponents and 1d large
deviation spectrum (section 28.2) we will focus on the 2d case (section 28.3)
in which the resulting spectrum is an image. As the spectrum computation
depends on the definition of a measure, we will test two of them. The first uses
the Choquet capacity as in [15], [18] and we will introduce a second measure
based on the combination of the gradient and Choquet capacity. A comparison
between the results obtained with each measure will be made in section 28.4.
Section 28.5 is dedicated to conclude the article.
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28.2 Multifractal formalism

We present in this section the formalism used to compute the multifractal
large deviation spectrum. We use the following steps:

1. Image normalization,
2. Multifractal measure defined by the Choquet Capacity [15],
3. Hölder exponents computation,
4. Spectrum computation.

28.2.1 Singularities computation

Let μ be a measure defined over a set E ∈ [0, 1[× [0, 1[, P (E) is a partition
sequence of E and νn is an increasing sequence of positive integer.

In this case, the partitions are defined as follow:

Ei,j,n =
{[

i

νn
,
i + 1
νn

[
×

[
j

νn
,
j + 1
νn

[}
For image analysis applications, we choose that the set Ei,j,n is a window of
size n centred on the point of coordinates (i, j), i.e. |Ei,j,n| = n. This window
is slide over the whole image by moving the center to its neighbours. In other
words, the centre of the new set Ei′,j′,n will have the coordinates (i′, j′) =
(i + 1, j + 1) if the movement is over the image diagonal, (i′, j′) = (i, j + 1) for
a horizontal one and (i′, j′) = (i + 1, j) for a vertical one. (i′, j′) = (i + 1, j)
for a vertical one.

Then for each image point (i, j) singularities exponents are given by the
Hölder exponents.

α (x, y) = lim
r→∞

log [μ (Br (x, y))]
log (r)

Where Br (x, y) is a window of size r = 2m + 1 with m = 0, 1, · · · , ⌊n2 ⌋ and
(x, y) = (1, · · · , r)2.
|Ei,j,n| is the size of the partition of E and μ the measure defined by the

Choquet capacity on each window. figure 28.1. shows a representation of an
image and three windows, respectively of size r = {1, 3, 5}.

In practice α (x, y) is determinate by the slope of the linear regression
of the following log curve: log [μ (Br (x, y))] versus log (r). The Figure 28.2.
shows the projection of the measure, built in figure 28.3. with a sum operator
capacity, over the logarithmic scale and also the singularity computation using
the slope of the linear regression (α (i, j) = 2.288). This allows to characterize
the behaviour of the measure μ at the neighbourhood of (x, y).

For image processing applications, the multifractal analysis is based on
the estimation of the multifractal spectrum determined by the Hausdorff di-
mension [19], the Legendre spectrum [15] or the large deviation spectrum [1].
In the scope of this article we study the last spectrum.
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Fig. 28.1. Matrix representing the image and three windows respectively of size
r=1,3,5

Fig. 28.2. Linear regression on a logarithmic scale

The main idea is to use a sequence of Choquet capacities which allows the
extraction of local and global information from the image in order to study
the singularity behaviour.

28.2.2 Choquet capacity measure

In this section, μ is a measure defined by the Choquet capacity. In the litera-
ture we found many capacities [16], [17] with a general definition having the
following shape:
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Fig. 28.3. Hölder coefficients after image normalization with r = {1, 3, 5}and n =
|Ei,j,n| = 5

μ (x, y) = O (i, j)∈Br(x,y) g (i, j)

With O an operator dealing with the intensity of a pixelg (i, j). As exam-
ples, we can cite: the sum operator O =

∑
, which is not a real informative

measure of the image since it computes the sum of the intensities within a
window, the maximum and minimum operator respectively O = max and
O = min, which have a low sensibility to the singularity amplitude. Other
operators have been introduced like self-similar or iso operator, more details
are given respectively in [18] and [15].

The main drawback of these operators is their lack of sensibility to the
amplitude or to the spatial distribution of the singularities.

In this article, our gait takes as a starting point the work carried out by
Turiel and al. [13] to determine the fractals sets. We combine one of the pre-
vious operators with the gradient ∇ computed on each pixel, defined over two
axes, and the norm. Thus we obtain three measures which are sensible si-
multaneously to amplitude and spatial distribution of the singularities. These
measures have the following expression

μx (x, y) = O∇xg (x, y)

μy (x, y) = O∇yg (x, y)

μxy (x, y) =
√

[μx (x, y)]2 + [μy (x, y)]2

Using these measures we can compute the singularity coefficients along the
two axes and also that the norm. In this paper, we use, in particular, the
gradient norm because it allows a correct representation and describe the
brusque variations of images intensity:

αx (x, y) = lim
r→∞

log [μx (Br (x, y))]
log (r)
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αy (x, y) = lim
r→∞

log [μy (Br (x, y))]
log (r)

αxy (x, y) = lim
r→∞

log [μxy (Br (x, y))]
log (r)

After the computation of the Hölder exponents, we can focus on the multi-
fractal spectrum estimation. In the following of the article, we will study the
definition and the method to compute the large deviation spectrum.

28.3 Numerical estimation of the large deviation
spectrum

Let us introduce in this section a two dimension adaptation of the two methods
defined by Lévy Véhel and al. [1]. This adaptation allows estimating the large
deviation spectrum from a measure construct by a combination between the
previous operators and the gradient computed on both axes and previously
describing.

This is a way to characterize the singularities and to study their behaviour
in a statistical point of view. In the two dimension case, we define the large
deviation spectrum as follow:

fg [α (i, j)] = lim
r→∞

log [Nr (α (i, j))]
log (r)

(M1)

fεg [α (i, j)] = lim
ε→0

lim
r→∞

log [Nε
r (α (i, j))]
log (r)

(M2)

where Nr [α (i, j)] = # {α (x, y) / α (i, j) = α (Br (x, y)) } for the first method
and Nε

r [α (i, j)] = # {α (x, y) / α (Br (x, y)) ∈ [α (i, j)− ε, α (i, j) + ε[ } for
the second one, which is a variant. α (i, j) is the singularity in the centre of
the window Br of size r,

α (x, y) is the singularity within Br at the spatial coordinates (x, y).
The first estimation using (M1) allows to compute the number Nr [α (i, j)]

of singularities α (i, j) equals to α (Br (x, y)). For the second estimation
(M2) , Nε

r [α (i, j)] represent the number of α (x, y) that belong to the in-
terval [α (i, j)− ε, α (i, j) + ε[.

For image processing purpose, both methods are summarized with the
following algorithm:

for each pixel (i, j),
for m = 0 to m = |Ei,j,n|

r = 2m + 1

compute Nr [α (i, j)] (resp. Nε
r [α (i, j)])

There is three particular values of m



28 Large deviation spectrum estimation in two dimensions 329

m = 0⇒ r = 1⇔ Br=1 = 1 pixel⇔ (x, y) = (i, j) (minimal window size)
m �= 0 and m �= |Ei,j,n| ⇔ Br is a window of size r × r ⇔ (x, y) ∈

{1, 2, · · · , r}2
m = |Ei,j,n| ⇔ Br is a window of size |Ei,j,n| × |Ei,j,n| where (x, y) ∈

{1, 2, · · · , |Ei,j,n|}2 (maximum window size)
The spectrum will be estimated by the slope of the linear regression

log [Nr (α (i, j))] versus log (r). figure 28.4. illustrates the Hölder exponents
and three windows used to compute the number of singularities Nr (α (i, j))
centred on (i, j). Figure 28.5. shows the projection over the logarithmic scale
and the linear regression for both methods and also the computation of the
large deviation spectrums fg et fεg .

Then figure 28.6. shows the large deviation spectrum matrices for both
methods.

Fig. 28.4. Hölder coefficients and window of size r = 1, 3, 5

Fig. 28.5. large deviation spectrum estimation with two methods ε = 0.3



330 Mohamed Abadi and Enguerran Grandchamp

Fig. 28.6. large deviation spectrum estimation with two method matrices with
n = 5

28.4 Results and experiments

In this section, we apply the two previous methods for the large deviation
spectrum estimation over a synthesis image (Figure 28.7) and also over an
image extracted from the FracLab software (Figure 28.8). Then we compare
the measure that we introduce with the other measures (Figure 28.9, 28.10).

Figure 28.7 shows that it is interesting to introduce the gradient before
applying an operator. In fact the three lines are underlined after the compu-
tation of the singularity exponents.

Figure 28.8. shows the singularity results with and without gradient. Sin-
gularities seem richer when using the gradient.

The more interesting comparison is shown in figure 28.9 and 28.10. The
first notable result is the display of a two dimensional spectrum. The figures
show a better spectrum obtained with the gradient operator. Concerning the
two methods used to compute the spectrum, we notice a better result with
the second one due to ε.

28.5 Conclusion and future works

This study, deals with large deviation spectrum estimation in two dimensions.
The first main conclusion is that the measure based on the gradient that we
introduce is an efficient way to improve intensity variations detection. The
second main conclusion is that the large deviation spectrum estimate on each
pixel according to its neighbours gives a local and a global characterization of
the information.

Large deviation spectrum is widely used for segmentation in the following
way: computation of the singularity, computation of one dimension spectrum,
segmentation of the image by integrating spectrum and singularity. Our ap-
proach allows to directly obtain a two dimension spectrum which is closed to
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Fig. 28.7. a) Image representing three lines (horizontal, vertical and diagonal) with
a gaussian noize (σ = 0.6). b) Hölder coefficients with the iso capacity. c) Hölder
coefficient computed with the gradient operator followed by the O = iso capacity
here (n = 5).

Fig. 28.8. Original image extracted from the FracLab software [2]. b) Singular-
ity exponents computed with the min capacity (n = 3). c) Singularity exponents
computed with the gradient operator followed by the O = sum capacity, with n = 3.

segmentation. It will be interesting to compare the two segmentation results.
In the same way, the introduction of the gradient before integrating a one
dimension spectrum will be compared with two dimension spectrum.

In addition by using the second method based on the ε−value can be
improve by defining a criterion of optimization which allows giving the εopt
optimal value is under development.

This spectrum has been estimated using two methods based on measures
built using Coquet capacity. It will be interesting for classification and seg-
mentation purposes to combine these different spectrums (one spectrum per
measure) in order to qualitatively show the interest of this study.
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Fig. 28.9. a) Large deviation spectrum estimated using the first and the second
approach (ε = 0.2) with n = 7 from the singularity exponents of Figure 28.8 b).

Fig. 28.10. a) Large deviation spectrum estimated using the first and the second
approach (ε = 0.2) with n = 7 from the singularity exponents of Figure 28.8 c).
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17. J.-P. Berroir, J. Lévy Véhel, Multifractal tools for image processing, In Proc.
Scandinavian Conference on Image Analysis, vol. 1, 209-216, 1993.

18. H. Shekarforoush, R. Chellappa, A multi-fractal formalism for stabilization, ob-
ject detection and tracking in FLIR sequences.

19. J. Lévy Véhel, C. Canus, Hausdorff dimension estimation and application to
multifractal spectrum computation, Technical report. INRIA, 1996.



Index

3D Face recognition, 141
3D Tracking, 161

Active contours, 177, 184–186
Address generator, 272, 274
AER-based imaging, 314, 315
Anthropometric Face Model, 189–191,

193
Anthropometric face model, 198, 199
Anthropometry, 190
Arbitrary cloning, 289, 296, 299
Arbitrary Slice Ordering (ASO), 216

Baum-Welch algorithm, 302, 304
Biometrics, 201
Blurred edge, 129, 135

CBERS, 37
CBERS satellite, 39
CCD camera, 39
Chain code, 194, 197
Channel coding, 301, 308, 310
Choquet Capacity, 325
Choquet capacity, 323–325
Circular waves, 180
Classification, 59
Closed contour extraction, 115
Content-based image retrieval, 129
Core, 229, 230, 233, 234
Correlated clutter, 27–29, 31, 35
Correspondence, 170
Curvatures, 169, 173

Data analysis, 59

Data Hiding, 255
Deinterlacing, 227, 228, 231, 232,

234–236
Dimension reduction, 59, 60
Direct acyclic graph, 170
Discrete circle, 184
Distributed radar detection, 49
DPCM coding, 301, 310

Edge based segmentation, 115
Edge detection, 103
Edge linking, 115, 116
Edge spread function, 38
Effective Instantaneous Field of View,

38
EIFOV, 38
Enhancement, 279, 281, 283–285, 287,

288
Error concealment, 241, 242, 249
Esophageal speech, 279–281, 283, 285,

287
Extensible ROI (xROI), 220

Face Detection, 157
Face detection, 155–158, 160, 162, 164
Face recognition, 141, 142
Facial Feature, 190, 193
Facial feature, 157, 189–193, 197–199
Feature extraction, 202, 203
Filiformity, 201, 202, 204–210
Flexible Macroblock Ordering (FMO),

216
Formant pattern, 279
FPGA, 269, 270, 272, 275, 277, 278



336 Index

Frequency matrix, 79–81, 92
Frequency subband, 301, 302, 306, 307,

309

Gabor filter, 201, 202, 206, 208, 209,
211

Gauss-Seidel iteration, 289, 296
Gaussian source, 301, 302, 310
Geodesic map, 147, 148
Geometric warping, 255–259, 263, 266
Gradient field, 289, 291, 292, 294–296,

299
Gray level image, 202
Grayscale image, 292, 295, 297
Grid case, 178, 181

H.264, 216

I-slices, 217
Image acquisition, 203
Image analysis, 155
Image classification, 79, 92, 93
Image cloning, 289–291, 296, 298
Image coding, 317, 321
Image communication, 241
Image editing, 289, 291, 296, 299
Image processing, 4, 7, 11, 178, 181,

189, 190, 199
Image reconstruction, 241
Image retrieval, 127
Instantaneous frequency, 4, 5, 8, 11
Interpolation methods, 249
Interpolation weights, 241–244, 251
Intramodal, 201, 202, 210
Intramodel, 202
Intrinsic dimensionality, 60
ISOMAP, 59, 61
Isometric Feature Mapping , see

ISOMAP
Iterative decoding, 301–303, 305

K-means Clustering, 63

LANDSAT, 60
Laplacian Eigenmaps, 62
Laplacian of Gaussian, 195, 196
Local correlation, 244
Local feature validation, 158

Manifold, 59

MAP channel decoder, 301
Markov model, 303
Mean shift clustering, 23
Mobile video, 224
MPEG-4 Part 10, 216
multifractal analysis, 323–325
multifractal spectrum, 323–325, 328
Multispectral, 59

Natural speech, 279, 281
Non gaussian clutter, 50, 55
Non linear compression, 50, 53–55
Normal vectors, 169, 170
Normalization, 156, 157, 159, 160, 164
Normed centre of gravity, 259
numerical computing spectrum, 323

Object recognition, 129

Packet loss, 241, 252
Palmprint, 201–207, 209, 210
Passive error concealment, 241
PCA, 172
PDE-based transformation, 3
PDM, 171
Pitch extraction, 279, 281
Point distribution model, 171
Point spread function, 38
Poisson editing, 289
Poisson equation, 289, 291, 292, 294,

299
Poisson image, 289, 291, 296, 299
Projection Pursuit, 62

Radon based method, 186
Reconfigurable, 270, 272
Reconstruction, 242, 243, 246–252
Reduct, 229, 230, 233–235
Region-of-interest coding, 217
Registration, 168, 170
Robust image segmentation, 261
Rough sets theory, 227–230

Sammon’s Mapping, 62
SAR image, 80
Satellite, 59
Second-Order Blind Identification, see

SOBI
Segmentation, 13, 14, 17, 20–23
Signal vector, 302
Skin detection, 157, 158



Index 337

SOBI, 61
Source channel decoding, 303, 305, 310
Source parameter, 310
Spatial resolution estimation, 38, 39
Spectrogram, 3
Steganalysis, 269, 272, 278
Steganography, 269, 270, 272, 275, 278

Textural parameter, 79
Texture analysis, 102
Texture extraction, 201, 205
Threshold, 193, 194, 197

Time-frequency distribution, 11

Video, 227, 228, 232, 235, 269, 300
Video codec, 216

Video frame, 216

Watermarking, 255–259, 264, 266

Wavelet, 67, 68, 70–73, 241–243,
246–251, 301, 302, 306–310

Wavelet coding, 241
Wedgelet, 67–71, 73



 
STILL IMAGE COMPRESSION ON PARALLEL COMPUTER ARCHITECTURES 

by Savitri Bevinakoppa; ISBN: 0-7923-8322-2 
INTERACTIVE VIDEO-ON-DEMAND SYSTEMS: Resource Management and 

Scheduling Strategies, by T. P. Jimmy To and Babak Hamidzadeh; ISBN: 0-
7923-8320-6 

MULTIMEDIA TECHNOLOGIES AND APPLICATIONS FOR THE 21st CENTURY: 
Visions of World Experts, by Borko Furht; ISBN: 0-7923-8074-6 

 INTELLIGENT IMAGE DATABASES: Towards Advanced Image Retrieval, by Yihong 
Gong; ISBN: 0-7923-8015-0 

BUFFERING TECHNIQUES FOR DELIVERY OF COMPRESSED VIDEO IN VIDEO-
ON-DEMAND SYSTEMS, by Wu-chi Feng; ISBN: 0-7923-9998-6 

HUMAN FACE RECOGNITION USING THIRD-ORDER SYNTHETIC  NEURAL 
NETWORKS, by Okechukwu A. Uwechue, and Abhijit S. Pandya; ISBN: 0-7923-
9957-9 

MULTIMEDIA INFORMATION SYSTEMS, by Marios C. Angelides and Schahram 
Dustdar; ISBN: 0-7923-9915-3 

MOTION ESTIMATION ALGORITHMS FOR VIDEO COMPRESSION, by Borko 
Furht, Joshua Greenberg and Raymond Westwater; ISBN: 0-7923-9793-2 

VIDEO DATA COMPRESSION FOR MULTIMEDIA COMPUTING, edited by Hua 
Harry Li, Shan Sun, Haluk Derin; ISBN: 0-7923-9790-8 

REAL-TIME VIDEO COMPRESSION: Techniques and Algorithms, by Raymond 
Westwater and Borko Furht; ISBN: 0-7923-9787-8 

MULTIMEDIA DATABASE MANAGEMENT SYSTEMS, by B. Prabhakaran; ISBN: 0-
7923-9784-3 

MULTIMEDIA TOOLS AND APPLICATIONS, edited by Borko Furht; ISBN: 0-7923-
9721-5 

MULTIMEDIA SYSTEMS AND TECHNIQUES, edited by Borko Furht; ISBN:  0-7923-
9683-9 

VIDEO AND IMAGE PROCESSING IN MULTIMEDIA SYSTEMS, by Borko Furht, 
Stephen W. Smoliar, HongJiang Zhang; ISBN:  0-7923-9604-9 

 
 C   ontinued from page ii 




